euserrs 0 WA ML Peiap 2

UNCLASSIFIED

/G 11/6.1




e £ g

k2
=

L =

22 fs e




FILE CORY
UNCLASSIF‘IJJ)'C AD‘A194 167

FCORITY CLASSEICATION OF THES PA
DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION
I e

ELECTEL b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHOR APR 1 1 1988 3 DISTRIBUTION/AVAILABILITY OF REPORT
26 DECLASSIFICATION / DOWNGRADIN ULE Appreved for public release;
distribution unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
o - ARO 21663.2-EG
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MON!TORING ORGANIZATION

University of Cincinnat] (f applicable)

U. S. Army Research Office

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Cincinnati, OHIO 45221 P. 0. Box 12211
Research Triangle Park, NC 27709-22.

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

U. S. Army Research Office DAAG 29-85-K0017
8¢. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

P. O. Box 12211 PROGRAM PROJECT TASK WORK UA

ELEMENT NO NO NO ACCESSIO|
Research Triangle Park, NC 27709-2211

11 TITLE (include Security Class:fication) . C . . .
An Endochronic Rate-Sensitive Constitutive Equation

for Metals. Application to Generalised Creep and Large Deformations.

12 PERSONAL AUTHOR(S) K.C.Valanis

13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT éYear, Month, Day) ['5 PAGE COUNT
FINAL oM 2-1-84 10 9/1/87 ¢ March 1, 1988 144

16 SUPPLEMENTARY NOTATION . . . : . .
The view, opinions and/or findings contained in this report are the

of the authqQr(s) .and shguld not be,constgugd as, an gfficial Dg¢partment of the Army posit
’ NN Vo) 3 -

esionate . ather documentatd
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and «dentify by block number)
FIELD GROUP SUB-GROUP Endochronic, plastic, viscoplastic, rate-sensitive

constitutive equation, generalised creep,

large deformation.

‘9 ABSTRACT \Cominue on reverse it necessary and identify by block number)

—=A constitutive equation is proposed with a view to describing the rate
dependent mechanical response of metals at high temperatures. The equation
is of the endochronic type and derives its physical foundations from
deformation kinetics. Of importance is the fact that hardening 1is
associated with a change in the energy barriers brought about by the
inelastic deformation of a metal. The equation is used to describe the
results, by Ohno and his associates, of experiments on the creep response

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJuncLassiFiEDUNUMITED (O SAME AS RPT. O oTic USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL _]22b TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, 84 MaRr 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PA

All other editions are obsolete

\ UNCLASSIFIED




|

=

.\\

BRI PR
BIAAL . e bk o N mhmas ad od S der e e —m at

A INCYASSTIFELIRD
d
SECURITY CLASSIFICATION OF THIS PAGE(Whan Dats Entered)

Lofmetalstopieoe—wisecarstanthostoria.'memetal in the present case is

304 stainless steel at 600 degrees C. It is shown that the theory gives
analytical results that are in agreement with experiment.

shoul i i i lies
de of the fact that the constitutive equation app

to gmgwgnl gistorias and is thus npot limited to histories

associated with creep.

theo ini i A constitutive

is also extended to finite deformations.
equation ?’sederivg, using internal variable theory, to the effect t:; the
Cauchy stress is quadratic functional of the relative glgirt:;sgxf- and tnure
terms ime scale which is intrinsic. The precise de .
scale g: ;i:::e in the text. A mmber of important proplems are solveczi_t;.rnmtclosed
form under corditions of constant strain rate. The 1rdustr1§llylinpo
problem of the axial campression of a block is solved mumerically.

e

L_A‘coass‘lon For

NTIS GRA&I

DTIC TAB 0

Unannounced ]

Justification _

By
_lzlrstxjibution/

Availability Codes
[ T lAvatl ané/or
Dist Special

I Dric
Corpy
AI\ ‘ !NSP(CIED>

4




AN ENDOCHRONIC RATE-SENSITIVE
CONSTTIUTIVE BQUATION FOR METALS.
APFLICATION TO GENERALIZED CREEP

AND IARGE DEFORMATIONS

FINAL REPCRT

by

K.C.Valanis
Research Professor
Arplied Research Center
University of Portland
Portland, OREGON
and
President of ENDOCHRONICS Inc

An Engineering Research and Consulting Co.

8605 lLakecrest Court Nw
Vancouver, WA 98665

March 1988

Research Furnded by the Army Research Office

Research Triamgle Park, NC
Grant No DAAG 29-85-KDO1”

o
Re)

/" A

<



V17 2/ 663.2+4¢

Table of Contents

].

2.

Introduction. Endochronic Theory.
Internal Variable Theory. Spectrum of Intrinsic Times.

Deformation Kinetics. Boltzmann Statistics. Discussion of
Physics of Kinetic Equation.

Analysis of Piece-wise Constant Stress Histories in Pure
Shear Monotonic Creep in the Presence of a Constant Stress
History. Special Solutions to a Constitutive Equation.
Discussion.

Specific Constitutive Equations for 304 Stainless Steel.

Comparison with Piece-wise Constant Stress Experiments

of Ohno et als. (Monotonic Creep Experiments, Cyclic Creep
Experiments.)

Two-dimensional Histories. Creep Response in Tension-
Torsion.

Large Deformation Theorv. Closed -Form Solution to
Special Proplems. Numerical Scolution to the Problem
of Compression of a Block.

Aopendix.

DA e e



List of Figures

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Initial and Disturbed Barrier Surface.
Energy Distribution in the Vicinity of €
Relation of f {/s/).

Monotonic Creep Tests

Fig. 5, 6, 7. Creep Strain Response to Piece-wise Constant Stress

Fig.8,

Histories.

9, 10. Torsional and Axial Creep Strain Response

in the Presence of Piece-wise Constant
Torsion and Constant Tension.




Abstract

A constitutive equation is proposed with a view to describing the rate
dependent mechanical response of metals at high temperatures. The equation
is of the endochronic type and derives its physical foundations from
deformation kinetics. Of importance is the fact that hardening is
associated with a change in the energy barriers brought about by the
inelastic deformation of a metal. The eguation is used to describe the
results, by Ohno and his associates, of experiments on the creep response
of metals to piece-wise constant stress histories. The metal in the
present case is 304 stainless steel at 600° C. It is shown that the theory
gives analytical results that are in agreement with experiment.

Of consequence is the fact that the constitutive equation applies to
three-dimensional stress or strain histories and is thus not limited to

those stress histories associated with creep.

The theorv is also extended to large deformations. This

is done by using the internal variable theorv. The resulting
constitutive equation is a statement to the fact that the Cauchv
stress is a qualratic functional of the relative Finger Tensor

in terms of an intrinsic time wich is defined in the text.




1. Introduction

In the present paper we develop an endochronic theory of viscoplasticity
which accounts for the history of strain and strain rate on the stress response
of metals at high temperatures. The theory is based on the concepts of
endochronic plasticity (see typically Ref.'s [1], [2], and [3]), however, the
increment of intrinsic time scale is no longer proportional to the plastic
strain path but depends also on the rate at which the path is traversed. The
development of the theory is dealt with at length in the subsequent sections.

The resulting constitutive equation is used to analyze the creep response
of 304 stainless steel to piece-wise constant shear stress histroies at 600°C
and to compare the results with the experimentally determined creep response of
the same material at this temperature as reported by Ohno et als. in Ref [4],

The constitutive behavior of metals at high temperature where the strain
rate sensitivity of the mechanical response cannot be ignored, has been the sub-
ject of extensive research in recent years. We do not wish to give in this
paper an exhaustive review of the literature on this subject but merely cite
references which are typical of the enormous amount of work which is being done
ir this field. In this context, the works of Chaboche [5], Krieg [6], Malvern
[(7], Haisler [8], Bradley [9], Leckie [10], Krempl [11], Walker [12], Miller
[13], and Hart [14], among others are mentioned. We also wish to cite the works
of Ohashi et als. [15], and Murakami and Ohno [16], aﬁd Ohno et als. [4] who
have been enjoying a measure of success in using a creep hardening surface
theory in describing the creep response of metals to piece-wise constant stress
histories, a subject with which we will be dealing in this paper. This aspect
of the mechanical response of metals has given rise to greater difficulties

than say, the stress response to piece-wise constant strain rate histories.
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The work of Krausz [17] and his co-workers also occupies a significant position
in the literature because of its more fundamental nature in that a microscopic
theory of deformation kinetics is used to gain understanding of the mechanical
response of metals at the bulk level.

In our initial approach to the subject, with specific attention to the
strain (creep) response to piece-wise constant, pure shear stress histories, we
: used a strictly phenomenological approach, in the context of an endochronic
theory. Specifically in one dimension we probed the data with the constitutive
equation

ef = fz Jz-z2") %§T dz' (1.1)
0-
Henceforth convolution integrals such as the one appearing on the right hand
side of eq. (1.1) will be given in symbolic form according to eq. (1.la):

def

b z p
[ 3z -z2') g dz' = J(2)%ds (1.1a)
0-

In equation (1.1) ep has the same connotation as ec, i.e., it is the inelastic

shear strain where
{ e =e =e- 35— (1.2)

and Mg is the elastic shear modulus. We caution, however, that other defini-
tions of eC have been used in the literature. The intrinsic time z was defined

by equation (1.3) where

dg

- _ 1.3)
f(z,z) (

dz

and ¢ = Iécl is the usual fashion. The dependence of f on & lends "strain rate

sensitivity” to the equation, which otherwise would be strain rate insensitive.

I S




While equations of the type (1.1), (1.2) and (1.3) were shown to give satis-
factory results in the case of constant strian rate histories as demonstrated by
Wu and Yip [18,19] and Lin and Wu [20,21], we found that these equations did not
prove satisfactory in the case of piece-wise constant stress histories. With
specific reference to the data of Ref. [4], it was found that f had to be essen-

tially independent of z, to account for the periodic creep response to piece-

wise constant cyclic histories. Thus, limiting f to a dependence on i only

f resulted in a gross overestimate of the creep strain under cyclic conditions.

} Correcting f so as to match the data gave rise to oscillations in f which could
not be accounted for by means of equation (1.3). Furthermore, the

{ phenomenological approach did not give any hint as to the physical mechanism(s)
responsible for such fluctuations in f. To overcome the difficulties we appealed
to the theory of deformation kinetics in the context of the internal variable
theory. The latter is treated briefly in Section 2 while the former is repre-

\ sented in detail in Section 3.
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2. Internal Variable Theory

Irreversible thermodynamics of internal variables is now a well established
field so we proceed to give a very breif outline of the theory for the sake of
completeness. We 1imit ourselves to small strain fields. In the Helmholtz for-
mulation the thermodynamic state is described by the free energy density ¢ which
is a function of the strain tensor € the temperature T and n interval variables
qr which, for thermomechanical processes, are tensors of the second order.

~n
The stress 6 and the entrpy density n are then given by equations (2.1) and

(2.2)
v
ggre (2~1)
3y
n=-zr (2.2)

In the case of a spatially uniform thermal field the condition of positive rate of

irreversible entropy gives rise to the inequality

a . .
- _EF cq">0,1qd0 %0 (2.3)
3q ~ ~

~

r, not summed.
In the linear version of the endochronic¢ theory ¢ is a quadratic function of

. . . r
its arguments and the evolution equations for q have the form

~

Y . ~ -
—a? +Er 12_'— = O (2.4)
r not summed, where n such equations exist, one for each variable qr, and br

~ ~

are positive definite tensors of the fourth order,



When isothermal conditions prevail and the solid is initially isotropic and

the tensors b _ are constant, then equations {(2.1) and (2.4) combive to give rise

the integral constitutive equations

! wn
]

2u(z)*de (2.5)

o = 3K(z)*de (2.6)

where s is the stress deviator, e the strain deviator and o and € the hydro-

~

estatic stress and strain respectively. The kerne]sr«(z) and K(z) are sums of

positive decaying exponential functions, i.e.,

-anZ -2 r

r
W(z) =] e , K(z) =3 K. e (2.7a,b)
r r
A - ive,
where};r, s Kr and r are all non-negative
In the generalized endochronic internal variable theory the evolution
equations are expressed in terms of the intrinsic times of the mechanisms of
internal motion. See Ref [22]. Specifically to each qr the theory ascribes an

~

intrinsic time z, such that the equations of evolution become
dq"
—=+b dzr = 0 (r not summed) (2.8)

In the endochronic theory of plasticity of metals as it has been used in the
past

2, =2, = ...=2 =12 (2.9)

and the elastic bulk modulus K in constant, i.e, the material is plastically

incompressible. Also,

(=%

dz=—§— , dz = 1de

p
z) '

(2.10a,b)

~



and
de” = de - »— (2.11)

where Mg is the elastic shear modulus. The function f is positive and non
decreasing. Thus in the case of plasticity, and in the context of the above

assumptions, equations (2.5) and (2.6) have the form

w
n

2u0(z)*de (2.12)

-~ ~

G = 3Ke (2.13)
Substitution of equation (2.11) in equation (2.12) gives an equivalent consti-

tuitive equation which relates s directly to the history of ep. Thus

~ ~

s = 20(z)*de” (2.14)

~

See Valanis, Ref. [23]. The relation between p and p is given in terms of their

Laplace transforms in equation (2.15).
S0 -2) -7 (2.15)

It has been found that in the case of metals at room temperature p and f are

well represented by the relations

-kz -b
p = Oola' e . f=1- ae z (2.16a,b)
2
where Por % 2 b are positive and k is non-negative,

In the Gibbs formulation the thermodynamic state is described by the free
energy density ¢, which is a function of the stress tensor 9 the temperature T
and n internal variables qr which, again, are second order tensors. The func-

~

tion ¢ is related to ¥ by the equation



¢ =y -~0,, €, (2.16)

The counterparts of equations (2.1) and (2.2) are
3¢

€ = - w5 (2.17)
and
. . 99
n=-37 (2.18)

whereas the positive rate of irreversible entropy gives rise to the inequality

a ° .
- —3; . qr >0, Iqu + 0 (2.19)
3q ~

9
for each r, where - 3%; is the internal microforce for the internal mechanism r

~

r . .
while the evolution equations for g are, in the case of the generalized

endochronic formulation

3 L,y .90 (2.20)

If we now stipulate that ¢ is quadratic in its variables and dzr = dz for
all r, and br are constant then in the case of isotropic materials and isothermal
conditions, equations (2.17) and (2.20) combine to give the constitutive

equations

1]
i

--‘IZ-L(Z)*dS {2.21)

m
"

%N(z)*dc (2.22)

When plastic incompressibility applies N is a constant and equal to % (see

equation (2.13). Also u and L are related by equation (2.23).




p(z)*dL = H(z) (2.23)
where H(z) is the unit step function.

In view of equation (2.11)

p_, 158

e -g-?uo (2.24)
Thus

eP _ ] J(z)*ds (2.25)

~N ? ~ ’
where

J{z) = - %—— H{z) + L{2) (2.26)

Yo

The functions J(z) and p(z) are also related as shown in equation (2.27)

J(z2)*dp = H(zZ) (2.27)

Spectrum of Intrinsic Times

Of the n internal mechanisms let group r have an intrinsic time z.. Then to
the group r of internal variables n. in number, there will correspond an intrin-

m
sic time z,. Evidently n.=n where m is the number of groups.
r=1
A straightforward analysis using equations (2.16) (2.17) and (2.20) when ¢ is

(r)

a quadratic isotropic function of eij and qij and br are constant isotropic

tensors leads to the equations

n
eP =7

] Jr(zr)*dfp (2.28)
~ r=

1
e’ =0, e=3N (2.29a,b)

T —————— Ty



where plastic incompressibility has been observed. They physical interpretation
of equation (2.28) is that each of the m groups of mechanisms, say r, contributes

to the total strain a partial strain eg such that

~

m
¥ el = ef (2.30)

where

eﬁ = (2 )*ds (2.31)

~

The intrinsic time z, is related to ¢ by the equation

where fr is the hardening function of graph r.

The need for this more general approach which was presented in a previous
reference [22), has been discussed in the introduction and ha$§ to do with the
fact that one intrinsic time is just not sufficient to describe the creep
\ response of metals to piece-wise constant stress histories. The physical justi-
fication for this possibility is discussed in the section on deformation kine-
tics, but simply put, it means that the hardening function f is not the same for
all mechanisms at high temperatures, though the assumption of an f common to all
qr suffices at room temperatures as demonstrated in our work on endochronic
plasticity. The appeal to deformation kinetics is necessitated by the desire to

determine how f is influenced by the micro-mechanical process which accompanies

the inelastic deformation.
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3. Deformation Kinetics

The theory of deformation kinetics was founded by Eyring [24] and its appli-
cation to rate processes has been pursued by Eyring, Krausz [24] and their
co-workers with a great deal of success.

In keeping with the ideas of deformation kinetics we attribute macromotion
to additive effects of micromotions brought about by local distortion of atomic
"energy barrers". At this point it is essential that we distinguish between
diffusion of particles and diffusion of dislocations or vacancies. The distinc-
tion may be stated most simply in terms of the mean free path £ of a particle.
In the case of particle diffusion £ is large compared to its counterpart in the
case of dislocation or flaw diffusion. If a particle travels n units of distance
"a" before coming to rest, then £ = na. However, if a flaw travels n units of
distance a, the mean free path of a particle is still a, because a different
particle partakes each time in the motion of the flaw. Thus in the case of par-
ticle diffusion n >> a. Most important, however, is the fact that, in either
case, each unit of motion consists of an atom moving across an energy barrier.

In addition we would expect that in the case of flaw or dislocation diffusion
the energy barriers would be lower than those of particle diffusion. In fact,
the activation energy of self diffusion is lower at low homologous temperatures
(where dislocation motion is dominant) than at higher temperatures where par-
ticle diffusion dominates the process.

To apply the ideas of deformation kinetics to the viscoplastic deformation
and flow of solids we appeal to a simple atomic model whereby pr{or to the
application of stress each atom of the solid is situated at the bottom of a sym-
metric potentia1 well. A typical potential well with the accompanying local
potential surface is shown in Figure 1 by a solid line. The forward and back-

r

ward barriers are equal and both have a height € - When stress is applied,




DY

N

the atoms will be displaced from their initial positions and the local potential
surface of an atom will distort. The distorted potential surface is also shown.
The effect of the distortion is to reduce the forward barrier by an amount w;
and increase the backward barrier by an amount w; . It will be shown that this

type of barrier distortion will give rise to an average forward motion of the

atoms occupying potential wells with barriers eg.

Boltzmann Statistics. To determine quantitatively the effect of barrier

distortion on the mean atomic motion we appeal to Boltzmann statistics.
Accordingly the probability of finding an atom in an energy state €; is given by
equation (3.1):

-Bej

p, = ae (3.1)

where
-Bei 1
a = 1/2 e s B =T (3.2a,b)
1
in the usual notation.
Let N be the number of atoms occupying potential wells with initial energy

barriers cg . The probability that an atom is in an energy state greater than

er is r where
0 Po whe

r r
Py = ) a exp (-Beg) (3.3)
rr
€i>50
States e: such that e: > eg we have called activated states [25] differing from
Eyring. Thus, the number of atoms in an activated state is Nrpg . As the
barriers are symmetric the probability that an atom will move forward is equal
to the probability that it will move backwards so that the net motion (ave-age

displacement) of the atoms Nr is zero.
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When the potential energy surface is distorted the number of atoms Ar par-

taking in a forward motion is now changed to

r
! AL =N ) a exp (-8e;) (3.4)
rror
RN

while the number Br of atoms partaking in as backward motion is

- _aeT
h B, = Nrri . a exp (-8e,) (3.5)

1
€i>€0+wb

The net number of atoms that partake in a forward motion is, thus, Ar - Br where

r r r

€ .<E W
i z0 b ( r
A -8 =N a exp (-Be,) (3.6)
r r v r r !
€i>€b-wf

To evaluate the sum on the right had side of equation {3.6) we shall assume that

r
w; and wb are both smail. 1In this case we represent the distribution of

. ro. s e ro. . .
energies ¢, in the vicinity of €y in terms of the local tangent to the distribu-

\ tion at eg by writing
el =eg + K (i - ) (3.7)

‘ where io is the value of i at s: = eg and kr is the slope of the distribution

which is a function (in general) of eg . See Figure 2.

Substitution of the relation (3.7) in the sum on the right hand side of
equation (3.6) leads to the simple expression
e-Beg .
r A, B, =2 a dlical (3.8)
1 - e 134

where

S o
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r
Wyt W

r b f

w o= , Bey = — . (3.9,10)

r
Bk

r
We note that the terms e-Be0 and 1 - e are related to the initial state, i.e.,

the barrier height and the energy distribution, while the terms sin Bw,. and
exp (-BAsg) are brought about by barrier distortion.
The mean velocity VE relative to the lattice of the atoms in group r may now
be calculated in terms of the barrier distortion parameters Nr and Aeg . If
A is the meah lattice distance and T, is the average time taken by the atoms of

group r to traverse that distance across the barrier eg then
P _ -
Ve (x/rr)(Ar Br)/Nr (3.11)

We now define an internal variable a. by the relationr

q. = Vf/k (3.12)

Evidently in view of equation (3.11)

0o
"

(Ar - Br)/Nr T, (3.13)

In view of equations (3.8) and {3.13)

-Ber r
2ae 0 7, “Bae

a =28 (e sinh 8 w (3.14)
r -sk" Tr r

1 -e
In so far as steady creep is concerned the assumption is usually made that

of all the operating mechanisms only one survives in the steady state, i.e

r =1 and W is proportional to the stress (in one-dimensional stress fields).

However, in the case of transient creep it is the local microforce, i.e.,

9
- 3%— on the group r that will determine the barrier distortion. Thus, following
r
Ref. [25], we let L be proportional to - %%— according to equation (3.15)
r
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N = Cp 5o (3.15)

where Cr may depend on temperature.

Thus if we let

r
-Bk Beo

T =(1-e )e /a (3.16)

boo

then in view of equations (3.14 - 3.16)

r
-BAco 30

r ° 1 . _
bOO q. * T e sinh (8 . ga: =0 (3.17)

This is an "internal variable" form of the equation for the mean irreversible

. . . . r
motion of the group r of paricles facing a potential barrier g

Discussion of equation (3.17). As we pointed out equation (3.17)

establishes a physical meaning for the internal variables in that q, is the mean
displacement relative to the lattice of a group r of particles facing a poten-

: ; r
tial barrier of magnitude € -
r r

Lalwani in Ref., [25], with bey = 0. The appearance of the term A,

(3.1) was inferred as a result of our effort to describe analytically the creep

The above equation was published by Valanis and

in equation

response of 306 stainless steel to piece-wise constant stress histories. This
will be discussed in Section 4.

The time to traverse the barrier, i.e., L is also of central importance in
equation (3.17). Eyring used simplifying assumptions to arrive at the conclusion
that T, is proportional to the square root of the ambient temperature. However,
one can show that it depends at least in part on the barrier shape and height
(Ref. [25]). 1In this work we have found that is also sensitive to the plastic
strain rate. This is to be expected sind T, depends on the barrier confor-
mation, which in turn depends on the plastic strain. The rate of plastic strain

affects the rate of barrier distortion which must affect the traversal time Tr




-
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Consider now two processes (a) and (b) the first of which is proceeding at a
faster plastic strain rate than the second. With regard to the forward motion
of a particle, the height of the barrier will be diminishing faster in case (a)
than in (b}, so that the forward moving particle will be encountering a con-
sistently lower barrier in case (a) than in (b). It follows that the time to

cross the barrier in case (a) will be shorter than in case (b). Thus

>
Ta < Tb whenever Ca Cb

The above inequality will be satisfied if

T
1 = 0 (3.18)

glz)

where i is a constant and g is a monotonically increasing function of z. In

this work we have set
N ]
glz) = vim (3.18a)
i

where m is a material constant.
Deformation kinetics is brought into accord with linear irreversible ther-
modynamics if in equation (3.17) the argument of the hyperbolic sine is suf-

ficiently small for the approximation

. 3
sinh (8 Cr Ja_ ) ~ B Cr T (3.19)

¢ 3¢
R r

to be appropriate. In this event equation (3.17) becomes a standard linear evo-

lution equation, i.e.,

]
b q +3—L 0 (3.20)

where

Tr
T © (3.21)
r
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In view of equations (3.18a), (3.20) and (3.21) one finds that the “"endochronic"

form of equation (3.20) is

r
r dq 3¢ _
bO'dz_'“ﬁ_' 0 (3.22)
r r
where
r_.r 0
bo = bOO -8— (3.23)
r
and
4z = -2 (3.24)
rooemg
- r
BAES
fr = e (3.25)

Thus in deformation kinetics terms the rate sensitivity is attributable to the
time to cross the barrier while the hardening (softening) is related to the
change in the mean height of the barrier as a result of the stress history.
Thus if Aeg increases the material hardens while if it decreases the material

softens in accord with our physical intuition regarding such processes.
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4, Analysis of Piece-wise Constant Stress Histories in Pure Shear.

We begin with the integral

eP = J(z)%ds (4.1)
where ep represents a shear creep strain component, s is the corresponding shear

stress component and J the appropriate creep function. As usual

4
g(g)f

dz (4.2)
where g is the rate sensitivity function and f the hardening function. Also

dg = k |deP| (4.3)
where k is an appropriate scalar constant. Typically, it ep denotes a creep
shear strain component and

dz = 1deP (4.4)

then k = v2 and J is the creep function in pure shear.

For our purposes it is more convenient to write equation (4.1) in the expli-

cit form
p_¢ oy ds
e” = [ J(z(t) - z2(t')) g dt (4.5)
0
for reasons that will become apparent.

4.1. Monotonic Creep in the Presence of a Constant Stress History

In this specific case
s(t) = sq H(t) (4.6)
where H(t) is the unit step function whose "derivative" is the Dirac delta func-
tion. In this instance substitution of equation (4.6) in equation (4.5) gives

the creep response in the simple form
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e = s, 9(2) (4.7)
where So is the amplitude of the step function of applied stress. It is
apparent from equation (4.7) that if the form of J(z) is known then knowledge of
z{t) determines creep strain in terms of the stress amplitude S We caution
that ep is not necessarily linear in s since z(t) depends on So as we shall
demonstrate.

To this end differentiate equation (4.7) with respect to t and use equations

(4.2) and (4.3) to find that under monotonic conditions

g(i) = ks, J‘(z)';"1 (4.8)

where J'(z) is the derivative of J with respect to z. Thus

t =g (k s, ' (2) 1 (4.9)

But from equations (4.7) and (4.3)

z =k 55 9'(2) z (4.10)

Thus from equations (4.9) and (4.10)

g-]{ksod'(z)f'1}
z-= k sOJT(Z)
Eoquation (4.11) gives z(t) by numerical integration if f is known,

(4.17)

To assign analytical forms to the functions J(z) and g(é) we appeal to
experiment and the underlying assumptions of endochronic plasticity. It is com-
mon experience that metals become more strain rate sensitive as the temperature
rises. However, the spirit of the endochronic theory is that this change is
brought about not by a change in the form of J(z) but by virtue of g(i) which
is evidently dependent on temperature even though this dependence is suppressed

in equation (4.2),
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At room temperature where rate effects are not significant J(z) is repre-

sented very closely by the analytical impression

a
J(z}) = JO 2z (4.12)
where a is the vicinity of 0.85 for a number of metals. This form is retained
by virtue of the above argument, at higher temperatures.

Experiments also indicate that under monotonic creep conditions

e = Fisg) (4.13)
i.e., that the stress and time dependence of creep strain are factorable and
that the time dependence is represented very closely by a power law, If during
monotone creep f is a constant - which was found to be so for one component of
the creep - then for equation (4.13) to hold g(é) must also be a power function.

Thus we have set
. ‘m
g(s) = ¢ (4.14)
In view of these stipulations equation (4.11) now becomes

1-m (a=1)(1-m)
m m
2

3| -

2= 1(ka 5o JO) (4.15)

Special solutions to equation (4.15). We proceed to give some special solutions

to equation (4.15) when (a) f is constant and (b) when f is a power function of
2. When f is constant the solution is given by equation (4.16):

8

™ nl 80
f"z=A(ka Sy JO) t (4.16)
where

' ' 1-m '
A=(B—r) ,B'=m/Y +am-a, n = 8 (4.17)

In the case where f = f0 z¢, where ¢ > 0, the solution to equation (4.15) is
given by equation (4.16) as before except that now the constant 8' is given by

equation (4.18):
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B' =m/1 +am-a + ¢ (4.18)
and the constant f on the left hand side of equation (4.16) is now denoted by fO'
Knowing z(t) one may now calculate the creep strain ep by use of equations

(4.7) and (4.12), in conjunction with equation (4.16). Thus

8
p_ 8, m n-1 n .8
e = A fo (ka) (SOJO) t (4.19)
where
1 +an’' =n, 8'a =8 (4.20a,b)

Discussion. So far we have represented the creep strain by a single integral.
We have also represented the creep function J(z), the strain rate sensitivity
function g(i) and the hardening function f(;) by analytical forms of the power
type. By analysis we then arrived at equation (4.19) which is basically of the
form

eP =B sNt (4.27)

where B is a constant, whereby the monotonic creep strain depends multiplica-
tively on the stress amplitude to the power n and the time to the power 8. This
form has appeared frequently in the literature where it has been arrived at by
analysis of the data. It does not for all creep data and certainly not over the
entire range of stress.

What is important, however, is that the creep strain depends on time
according to a power law iequation (4.21) in accordance with observation as per
equation (4.13) while the dependence on stress is of a more general type. One

p

can change the dependence of e on 5, by changing the analytical form of J(z) or

g(%) or both but it seems that this would vitiate the dependence of e’ on a
power function of t. Two other avenues are, however, available. One is to

introduce a spectrum of intrinsic times, as discussed previously, i.e., a series
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of integrals on the right hand side of equation {(4.1). The other is to intro-
duce a stress dependence in the hardening function f . This has been found to
be the case in other materials such as polymers,

Specifically, if one sets

£ = folsg)z .22)
then under monotonic creep conditions in the presence of constant stress
equétion (4.19) will have the form given by equation (4.13), for an appropriate
choice of the function f.

This approach alone, however, has been found inadequate to describe creep
under cyclic piece-wise constant stress histories. This question as well as a
constitutive equation involving more than one intrinsic time will be discussed

in the next section.
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5. Specific Constituitive Equations for 304 Stainless Steel

In the application of the theory to 304 stainless steel at 600°C and speci-

fically to the experimental data generated by Ohno et als. (Ref. [4]), two

terms were retained on the right hand side of equation (2.28), i.e.,

P . * * 1
e J1(z1) ds + Jz(zz) ds (5.1)
For the purposes of analysis and presentation of the results it is more con-

venient to write equation (5.1) in the form

p_ P p
e’ = e + e, (5.2)
where
P . .
e, Jr(zr) ds (5.3)

r =1, 2. In this case two hardening functions exist in the sense of equation

(5.4)
(5.4)

e | —s
5

_ dz
dz, =+
r

where m is a material constant found to be equal to 0.12. Also two creep func-

tions J1(z) and J,(z) are needed and these were given the analytical forms shown

2
in equation (5.5):

a
2
R R (5.5 a,b)

where a = 0.836, a, = 1. JO = 2,34 x 10-3 MPa, JO = 1.58 x 10-3 MPa, It still

2 1 2
remains to determine the form of the hardening functions. In order to match the

monotonic data f2 was represented by a power function of the form

$2
=z

:, (5.6)

where ¢2 = 0.196.
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On the other hand f1 could not be represented as a state function of, say, s

and z, or any other variable for that matter. Rather, the experimental cyclic
results of Ref. [4], gave strong indication that f1 should be given in differen-
tial form of the type

d log f, = dF(|s], z1)|z1 (5.7)

Note that the right hand side of equation (5.7) is not an exact differential and
hence f is a function of the stress history. The physical implication of
equation (5.7) is that a change in 2, does not affect f.l if during the change
the absolute value of the stress s remains constant. A mathematically more

explicit form for f1 is
d log f, = oF (Is], z4) d|s]| (5.8)
1 3[s] * " :

The logarithmic form is not fortuitous but is a consequence of the physics of

deformation kinetics and specifically equation (3.25) in view of which

log f, =84 eé (5.9)

d log f, =8 d (& EO) (5.10)

The implication is that in mechanism 1 the mean barrier height will change when
the absolute value of stress changes but not otherwise. The constituitive
description of the material is complete once the function F(|[s], 21) is known,

The function F is given below for various values-of |s| (in MPa):

F(134.2, 2,) = 2.25 + 1.30 - e 307
F(120, 21) = F(134.2, 21)
-50z2 (5.11a,b,c,d)
F(90, z1) =2.19 + 0.9(1 - e 1)
F(60, 2,) = 1.86 + 44(1 - e 55721y

1
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In addition the value of the hardening function at zero stress and zero value of

z is set at 0.1054. This value together with the relation.

log f(0,[s|,) - Tog f(0,[s[,) = FEO, [sl, = F(O,[s],) (5.12)

where S and s, are any two stress levels determines f for various values of the

initial stress applied at the onset of a creep experiment.
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6. Comparison with Piece-wise Constant Stress Experimetns of Ohno et als.

Monotonic Creep Experiments

The strain response to a constant stress history is obtained by application
of equation (4.19) in conjunction with equation (5.2). Specifically
g
Gp -(3) np-l N Bp

p_ ¢ r )t (6.1
e" = Z]A fOr (kur) (s.J 1)

in the presence of the constraint

81 = 82 = g, ny=n, = n, m =m =M (6.2)

so that equation (6.1) becomes

8
2 a -—
P _ n .8 r m n-1 n
e’ = (so) t ] A (fOr) (kar) Jor (6.3)

In the case of the linear model (2), f,, is a constant. However, in the
non-linear model (1), fO] is a function of |s|. This dependence is determined
by adjusting f.., for various values of |s|, so as to obtain optimal agreement
between theory and experiment in the case of monotonic creep. The function
f . (|s|) is shown in Figure 3. With all the other constants known, the

01
descriptive capability of the theory is shown in Figure 4.

Cyclic Creep Experiments

Following Section 2 let eﬁ be the r'th partial shear strain such that
= *
e, Jr(zr) ds (6.4)
and
m
ef =7 eg (6.5)
r=1

where in our case m = 2. For our purposes it is more convenient to write equation

(6.4) in the form




e g -

R R

t
P _ _ r., ds .
e -é Jr[zr(t) 2(t)] gz dt (6.6)

in the specific case of piece-wise constant stress histories of the type con-

sidered by Ohno et als.

aQa

?c = so{s(t) - a G(t-t.') +a 6(t-t2) veee } (6.7)

a

where §(t) is the Dirac delta-function, S1 is the initial stress amplitude and a
is a constant. 1In this set of experiments two parameters So and "a" define the
history of stress - in addition to the reversal times t1, t2 ees tn.
Substitution of equation (6.7) in equation (6.6) and integration gives the

explicit result

el = s, 13.2,) + anL(-n' 30z -z )} (6.8)
or
eg = s, y(z) (6.9)

where y(zr) represents the bracket on the right hand side of equation (6.8). We

differentiate equation (6.9) to obtain

.p _ - .
e. = S, yézr) z (6.10)
where §'= %%- . Use of equation (5.4) then gives the result
r
‘b _ ~
AL (6.11)

Now we take absolute values of both sides of equation (6.11) and use equation

(4.3) to obtain
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.m .
= 6.12
f. e So kly| ( )
But in view of equation (5.4)
,’l_
. . —
g = (fr zr) (6.13)

Equations (6.12) and (6.13) combine to give the following differential relation

between dzr and dt
1

fm

r 42,

dt = ];;__T-IEE (6.14)
0 XJ m
Integration of equation (6.14) gives the relation between z, and t.
Substitution of zr(t) in equation (6.8) then gives the desired relation gp(t)
and, therefore, ep(t) upon use of equation (6.5).
In our particular case

ap

J. = JOr z, (6.15)

and
aq N a,
y =a J_z +al (N3 (a -a ) (6.16)
r r Or r n=1 Or 'r rn

In Figures 5, 6 and 7 we show the experimental values of ep(t) obtained in Ref.
[4]) for the stress histories shown. Also shown are the analytical functions
eP(t) obtained (a) by the use of the present theory and (b) as reported by Ohno
et als., in Ref. [4] using their own theory.

The most significant difference in the predictive capability of the two
theories lies in their depiction of the creep recovery slope at points of stress
reversal., The endochronic theory predicts an infinite slope, in agreement with
experiment, while the theory by Ohno et als. depicts a finite much shallower
slope. Overall the predictive capability of the endochronic theory is very good

for the type of stress histories discussed here,




7. Cree n Tension-Torsio

In this section, we examine this problem in the complex case
where both the torsion and tension histories are piece wise
constant junctions of time. In addition in the complexity of the
stress histories, we have the added coupling effect which is
observed experimentally. In other words, the cyclic creep in
torsion is affected by the presence of tension. It will show that
this effect is accounted for satisfactorily by the definition of
intrinsic time. 1In this section we shall address the experiments
of ohms [4] where cyclic creep in shear is carried out at constant

tensile stress.

The basic equations are:

b
g =% §: (7.1)
r=1
f = =©(2p) * 9§ (7.2)
d€ 1
az . = P (7.3)
as = [1af® || (7.4)
o
Jr = Jr 2 ar (7'5)

£, = 29r (7.6)




Thus the actual solid is represented by two inelastic model solids
in series. The pertinent material functions and constants are
the following:

a; = 0.836, J; = 2.34x10~3 MPa

° -3

ag = 1.0 J; = 1.58x10"3 MPa

m) = mgy = 0.12
In this section f; is a constant for simplicity while in section 6
it was an elaborate function designed to match the experimental
data as closely as possible. Thus in this section, the
effectiveness of the theory is demonstrated without the need for

the complexity of representation of f; adopted in section 6.

T The stress histories involved in the experiments of Ref. 4 are

of the type

01§ (X) = 034 Ha(t) (7.7)
where

Ha(t) = H(t) - a é:ll H(t-rtg) (7.8)

and H(t) denotes the Heaviside step function.

In the following dencote the axial stress by oy, the axial
creep strain by ¢P, creep strain by eP. 1In all the experiments
considered below

ay = 07 H(t) (7.9)




[

while o
s = 8 Ha(t) (7.10)

for values of a equal to 0, 1.5 and 2. Plastic (inelastic)
incompressibility is assumed; i.e.
P = 0 (7.10)
Pk

In the presence of equation (7.10), equations (7.1) and (7.2)

become
é; = Jp(Zr) * ds (7.11)
@ = 2 J,.(2r) * d6 (7.12)
1r 3

substition of equation (7.8) in equation (7.11) gives the explicit

result:
p N
er = 85g {(Jp(2y) + a %» (=1)® JTp(Zp=Zpn) ) (7.13)
n=
pTr 2

The creep strains of eP and ¢P were then determined numerically
following the method given in detail in section 6. The results
are shown in Figures 8, 9 and 10 for corresponding values of a=1,
1.5 and 2. Comparison with data shows good qualitative agreement.
However a refinement of the representation of the hardening

properties of the material seems pertinent.

The work of this section was done co-jointly by K.C. Valanis
and S.D. Lee. The latter is a graduate student in civil
Engineering at the University of Cincinnati.




8. large Deformation Theory

In this section we extend the theory to the damain of large deformation. This
is an important develcpment because high temperature processes, during which
materials are strain rate sensitive, involve large deformations. Our target
here is metals.

A great deal of effort has been expended in recent years to develcp
constitutive egations pertaining to large deformation of metals. The problems
that one encounters in the fornulation of small deformation theories are
magnified when large deformations are involved. When the problem is approached
from a yield surface point of view, ane has to be concerned with the evolution
of its geametry in stress space as the material deforms and its translatiocn in
stress space ( i.e., a constitutive description of the back stress - which has
been the central problem in classical plasticity).

In addition, and irrespective of cne's approach, the question of
appropriate separation of the increment of plastic strain (defined in large
deformation terms) into elastic ard plastic parts must be addressed and
resolved. How this is to be dane is a matter of differing opinion. Of course
over and above these considerations, the principle of isctropy of space must
must apply. This last requirement creates other difficulties associated with
"cbjective rates” when incremental theories are considered. In strictly
mathematical theories the choice of a physically "correct" cbjective stress
rate (say) is not cbvious a priori.

In the present paper we side-step a mmber of the above problems by
utilizing the concepts of endochronic plasticity in comjunction with the theory
of internal variables to arrive at a constitutive equation of the hereditary
type whereby the stress tensor (in terms of its covariant camponents in the
material frame) is a quadratic functional of the history of the Right Cauchy-
Green tensor. Plastic incampressibility is assumed and the elastic deformation
is neglected relative to the large plastic deformations considered in the
paper.
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The theory is applicable to both strain rate dependent and strain rate
independent processes. In the applications a constant strain rate has been
assumed. This is equivalent to a constant plastic strain rate, in the light of
the assumption that the elastic camponent of strain is negligible.

A rumber of solutions of practical interest have been ocbtained in
closed form or by finite element techniques in strictly lagrangian terms thus
cbviating the mmerical difficulties associated with Eulerian formulations.
Also difficulties associated with objective rates are not encountered because
of the integral form of the constitutive equation. Solutions associated with
bending, torsion and inflation are abtained in closed form. Finite element
solutions pertaining to forging of blocks have also been aobtained and will be
discussed.

The constitutive equation was first tested by application to the
simple hamogeneous extension of a bar in the presence of a memory kernel that
gives rise to asymptotically constant Cauchy stress. Monctonic behavior was
cbserved with no instabilities. The Piola stress first increased and then
decreased with stretch as cbserved in experiment. The problem of plastic flow
in a tube (extrusion problem) was then solved in closed form. Substantially
flat displacement profiles were cbtained, in agreement with cbserved behavior.

The problem of the large inflation of a thick sphere was then
solved again in closed form revealing a geametric instability at a critical
value of the intermal pressure, as is cammonly cbserved. Finally the finite
bending of a beam was solved revealing the abserved shift of the neutral axis
toward the campressive side and strongly non-linear stress distrilbution within
the beam. :

The "upsetting" of a block, i.e., forging by means of a vertically
applied displacement, was solved by finite element methods. The initial
barrelling eventually gave way to a bone-shaped configuration and the vertical
stress at the cutside boundary went from campressive to tensile as expected.
The ease of the camputation is emphasized.

The body of this work, which served as the Ph.D. thesis of Dr. J.




Wang, is not given in this section, but is appended as Apperndix I.
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Fig. 1 Initial and Disturbed Barrier Surface
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ABSTRACT

The object of this research 1s an extensive study of an endochronic
constitutive relationm for both incompressible and compressible materials
undergoing finite plastic deformation. Attention, in this dissertation, has
been paid to the foundation, application, and computational capability of
the theory.

In the first part of this dissertation the endochronic constitutive
relation of plasticity for incompressible rinite deformation, as proposed by
Valanis in 1978, is reviewed. This relation is formulated in the material
frame of reference which 1s convenient for problems involving a definite
initial configuration such as a solid as opposed to a fluid. A set of
academic and practical problems of interest, consisting of finite plastic
uniform extension, finite plastic shear flow in a pipe, finite plastic
torsion, finite plastic bending, and finite plastic spherical expansion, are
solved analytically. Closed form solutions are obtained for all problems by
the use of a semi-inverse method.

In the second part of this dissertation the theory is extended to
account for plastic compressibility. incompressibility is pivotal in the
development of classical theory of plasticity. However, it i{s only an
assumption and a simplification of the actual situation. In the endochronic
theory, plastic compressibility can be accommodated. This {a done by
modifying the free energy density function of the plastic deformation

process by adding a term y,(I,) which reflects the compressible plastic

viit




deformation and then developing the constitutive relation for a special

functional form of Yo(I,).

To solve more general engineering problems, a numerical method is
developed using the powerful finite element technique for boundary value
problems for both compressalble and incompressible materials. In the

compressible case, a special form of ¢, 13 used to demonstrate the

application of the theory. The finite element formulation 1s referred to the
material system, by using a Lagrangian formulation.

A computer code i3 then established to solve a plane strain boundary
value problem in the presence of compressible plastic deformation by the use
of linear triangular elements. A specific problem associated with a metal
forging process, that of '"upsetting" a block {s analyzed numerically using
the code. All relevant parameters ¢f the problem are investigated. The
results obtained give a very reasonable description of the forging process.

The study of this dissertation shows that the endochronic theory, which
{s based on a scund thermodynamic foundation, also has a powerful
computational capablility for solving practical engineering problems that

involve large plastic deformation.
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CHAPTER 1 -~ INTRODUCTION

Finite plasticity as a subject dealing with a time-independent, rate-
independent, large permanent strain during a deformation process, has very
significant application in engineering problems. In ductile metals, under
‘favorable conditiohs, plastic deformation can continue to a very large
extent without failure., For instance, except for castings, which are formed
from the liquid state, all metal products are subjected to at least one
metal forming process during their manufacture., In metal forming processes
such as forging, drawing, extrusion, rolling, stamping and cutting, etc.,
the products suffer a considerable shape change. The deformation is
substantially permanent and involves predominantly large plastic strains.
Other processes include the plastic bending of dbeams and plates, the
overstraining of spheres and cylinders which are widely used as pressure
vessels in the chemical industry for example. A thorough understanding of
the mechanics involved in large plastic deformation {3 very i{mportant to
engineering application and design. Moreover, the advancement of many
branches of solid mechanics such as fracture and fatigue as well as soil
mechanics, rock mechanics, geophysics, and geology, etc., i3 closely related
to the development of a sound plasticity theory. Recently with the
availability of high-speed computing facilities and the development of the
sophisticated mater{ial testing machines, many researchers have been

motivated to develop more advanced theories of plasticity. Hence many of the




simplifying assumptions {n plasticity and many empirical formulations are no
longer necessary.

A difficult element of classical plasticity is the concept of the yield

surface, which leads to experimental and numerical difficulties in attempts
to describe and analyze the two- or three~ dimensional response of a
material. Valanis [1,2] circumvented this difficulty by proposing, in 1971,
the endochronic theory, which does not require the concept of yield for the
descriptidn of plastic behavior of materials. During abou:t 15 years'
development, a number of publications documented the potential of the theory
to describe the mechanical response of materials under conditions of small
plastic¢ deformation and proved that the enddchronic theory of plasticity was
able to predict not only the salient features of the plastic behavior of
materials, but alsc a number of observed features of plasticity that lay
beyond the scope of the existing plasticity theories. It i{s natural then to
extend the endochronic theory to the other subjects in plasticity such as
problems of large deformation, rate-dependence, and thermomechanical
coupling, ete. In this dissertation, we study extensively how the
endochronic theory can be applied to problems in the domain of large plastic
deformation and how it can be used to solve relevant engineering problems.
Before proceeding with the development of the theory, we will review briefly
the history of the classical and endochronic theories of plasticity.
Plastlicity as a science i{s generally regarded to have begun in 1864
when Tresca [3] publlshed a preliminary account of his experimental results
on punching and extrusion and formulated a yield criterion which states
that a metal ylelds plastically when the maximum shear stress attains a

- 2 -
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critical value. Early contributions to the theory of plasticity were also
due to Saint-Venant [4] and Levy [5], who in 1870 applied the Tresca yield
criterion to establish relations between stress and plastic strain-rate for
two-dimensional and three-dimensional plastic deformation.

In the following 60 years development of the theory.of plasticity was
slow. After 1921, there were important contributions from Von Mises (6],
Hencky (7], and Prandtl [8]. Von Mises suggested a yield criterion on the
basis of purely mathematical considerations and Hencky later interpreted
that this yield criterion implies that yielding occurs when the elastic
shear-strain energy reached a critical value. Prandtl showed the plane
plastic strain problem was hyperbollc and calculated the loads needed to
indent a planar surface. Hencky continued Prandtl's work and discovered
simple geometrical properties of the field of slip-lines in a state of plane
plastic strain. Lode [9] and Tayler and Quinney [10] carried out experiments
on various metals under combined tension and internal pressure. The
effective appllcation of plasticity theory to technological processes began
in 1925 when Von Karman [11] analysed the stress distribution during the
rolling of metal strip by an elementary method. In the following year Siebel
(12] and Sachs [13] presented similar theories for wire drawing.

About 1950, the classical mathematical theory of plasticity entered a
fully developed period. D.C. Drucker [14] generalized the meaning of work
hardening and related it to the stability of plastic deformation by
postulating that (1) the work done by an external agency during the
application of additional stresses {3 positive for a working-hardening
material, and (2) the net work done by an external agency during a cycle of

-3—




addition and removal of 3tresses in a material undergoing plastic

deformation {s positive. This led to the normality of plastic strain rate
vector with respect to the yield surface and convexity of the yield surface.
The Von Mises flow rule was then derived, which provided the relationship
between the loading (yielding) function and plastic flow. In 1961, Ilyushin
(15] stated his postulate of plasticity, which he claimed to be a
generallization of Drucker's postulate. A third aspect of the classical
plastic theory, besides the lnitial yield criteria and an associated flow
rule, includes the isotropic hardening rule by Hi1ll [16] and Hodger [171],
kinematic hardening rule by Prager (18], modified kinematic hardening rule
by Ziegler [19], and Mroz's rule of hardening modull [20].

The theories to describe the relation between stresses and strains are
of two general classes, which are total strain (deformation) theory and
incremental strain (flow) theory. The total deformation theory is no*
physically sound because it cannot account for history effects in the
mechanical response of dissipative materials. Thus, preference {3 given to
the flow theory, which {s still useful in some problems [21,22]. Based on
the classi{cal theory, a number of researchers proposed different
constitutive relations for large plastic deformation problems. They include
Hill (23,24], Rice [25,26], Mandel [2}.28], Lee [29,30], and Green and
Naghdi [31]. However, the existing results in the literature showed
anomalous solutions to analysis of necking and localization in metal and
peculiar results for predic ion of oscillatory shear stress due to a
monotonically increasing simple shear strain [32-35)] when the kinematic

hardending rules are used.
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In the late 19603, the formulation of constitutive theories of

viscoelastic materials from concepts of irreversible thermodynamics and
internal state variables reached an advanced level of development ([36]. On
the basis of this success, the theory of plasticity was re-examined along
the lines of irreversible thermodynamics, since by nature plastic
deformation should be considered as an irreversible thermodynamic process.
In 1971, Valanis [1,2] proposed a new approach, called endochronic theory,
for describing the behavior of viscoplastic'material. The theory was
develoned on the concept of stress and free energy being a functional of the
entire histories of deformation and temperature based on thermodynamics and
internal variables. Two new concepts were drawn in the development of the
theory, which are (1) the concept of intrinsic time, defined as the ndrm of
the increment of the total strain tensor., It i3 a scale with respect to
which the memory of a material of its past deformation history can be
measured and (2) the concept of the description of plasticity without a
yield surface. The application of the theory was given by Valanis {2,37]. Wu
and Lin [38] used the theory to obtained the simple wave solution of a thin-
walled tube subject to combined step loading. Valanis and Wu [39] showed
that the theory {s able to predict cyclic creep andA relaxation of metals. Wu
and Lin (40] tfllustrated how the strain rate effects could be {ncluded in
the theory. Bazant (41], Bazant and Bhat [42], and Bazant and Krizek [43]
modeled the {nelastic properties of geological materials including sand,
rocks and concrete using the theory.

The theory was attacked by Sandler [44] on the basis of a conjecture
that the theory might give rise to numerical instabilities in the solution

-5-




of wave propagation problems and also on lts prediction of unloading-
reloading behavior which violates Drucker's postulate of material stability.
To these arguments, Valanis and Read [45] claimed that the instability is
due to the non-uniqueness of the solution of posed problem and not the
fault of the endochronic model. They also claimed that Drucker's postulate
{3 not of thermodynamic origin and can be violated by the standard
frictional physical systems.

A more serious concern, however, was the openess of the hysteresis
loops. Therefore, the new endochronic theory was developed [U5-U7]. In new
theory, a new intrinsic time was deflned in the plastic strain space, and a
weakly singular kernel function was introduced. It was shown that various
versions of the classical plasticity theory are asymptotic cases of the
endochronic theory. Idealized plasticity models are shown to be constitutive
subsets of the general theory. In particular, the kinematic model, the
isotropic hardening model, as well as their combinations are derivable from
the general theory. The new theory has been applied to situations involving
unloading and cyclic behavior of materials [45,u48]. Lin and wWu (49] applied
the theory to the viscoplastic wave propagation problem of a thin-walled
tube subjected to impact loading. Valanis and Fan [50] analyzed the cyclic
elastlc-plagtic strain fields in a notched plate. Pindera and Herakovick
(51] applied the theory to mocdel the response of unidirectional composites
under off-axis tensile load.

In 1978, Valanis proposed an extension of endochronic theory that can
apply to problems of large plastic deformation [52]. He developed a

constitutive relation for incompressible materials and used it to analyze a
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problem of simple shear. Recently Valanis and Wang (53] used the
constitutive relation to analyze the problem of finite plastic bending.
Further applications of the theory to a set of special engineering

problems,including closed form solutions, will be presented in this

dissertation.




CHAPTER 2 - ENDOCHRONIC CONSTITUTIVE RELATION OF

INCOMPRESSIBLE PLASTICITY WITH FINITE DEFORMATION

An endochronic constitutive relation applicable to problems of lérge
plastic deformation was proposed by Valanis (52] very much along the lines
of the endochronic constitutive theory of small plastic deformation [1-2,
u6-47], which is founded on irreversible thermodynamics of internal
variables and the notion of intrinsic time. In reference [52], the
endochronic constitutive relation of plasticity was derived for an
incompressible, lsotropic, and isothermal material in the spatial frame. In
this chapter the derivation of the constitutive equation for large plastic
deformation is reviewed in the material frame of reference, 3since in the
next chapter the theory will be used to analyze a set of problems which

involve definite initial configurations,.

2.1 Review of the Endochronic Constitutive Equation

Let Rx be a material region with a surface Sx' in an initial unstressed
state, In this state the geometry of Rx i3 defined with respect to a fixed

Cartesian 'material' frame, x® . The deformed region R with a aurface Sy is

y

defined with respect to Cartesian ‘'spatial' frame, Y, . Tre deformation of Rx

i

i{s defined through the one-to-one mapping Rx’ Ry such that

Y - Yi(x".w . (2.1.1)

{
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In the following when quantities are referred to coordinates Xa, their
indices will be the lower case Greek letters; and when they are referred to

coordinates Y their indices will be the lower case english letters.

1 ’

The deformation tensor CGB and the deformation rate tensor dij are

defined by

ayi BYL
C 5 =3 (2.1.2)
b ax® ax
Y ov
L, _J
dij 172 ( aYJ + aYi ) . (2.1.3)

where vi 13 the velocity of a particle.

In their local forms, the fundamental laws of thermodynamics in the
material coordinate frame are:

the first law,

g a

Ca - h, +Q ) (2.1.4)

e = (po/20) T2 . .

the rate of dissipation inequality,

oY = (po/p) T%B Cg-¥-nb2o (2.1.5)

and the heat conduction {nequality,

-n%s, 20 , (2.1.6)
a

8

where ¢ denotes the internal energy per unit mass, T%° the contravariant

components of the stress tensor ln the materlial system, ¥ the free energy

density per unit mass, O the absolute temperature, ha the heat flux vector,

Q the rate of heat supply, Y the irreversible entropy, n the entropy, p, and




p the density of the medium in the undeformed and deformed configurations,
respectively, and the dot denotes the time derivative,

In the internal variable formalism an assumption is made that the
thermodynamic state of a body undergoing an irreversible process can be

speciried by the current values of Ca and @ as well as n i{nternal variables

8

3r {(not necessarily observable), which could be scalars, vectors or tensors

in the material frame or the spatial frame, depending on the transformation
laws that they are assigned to satisfy. Thus the free energy ¥ is set to be

a function of Ca , 8, and q.- Inequality (2.1.5) then becomes,

8
. aB 3Y¥ . ¥ . ¥y -
oY =[(po/2p) T e )1 Chg = (55 + Me 3. & 20 - (21
aB =T
Since Cas v Q. and 6 are independent of each other, the following

relations must hold to preserve the dissipation inequality for an arbitrary

process:
8. 2 gg , (2.1.8)
pO GB
n--g—; , (2.1.9)
-g—: &rzo ; (2.1.10)
r -

For incompressible materials ( |Ca8|-1 ), eq.(2.1l8) becomes

B _pe8 (2.1.11)

T
aCaB

where P i3 an arbitrary hydrostatic pressure,
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The reduced dissipation inequality (2.1.10) admits the internal

constitutive equation:

- 33; - Er’ q. (no sum on r) |, (2.1.12)

where Er are positive definite fourth order tensors.

The unique feature of the endochronic theory (see Valanis [45-47]) is
in the definition an intrinsic time scale as the distance in plastic strain
space between two plastic deformation events, and the stipulation that the
stress be a function of the history of plastic deformation, measured with
respect to the intrinsic time scale. In the case of large plastic
deformation of metals one can afford to ignore the contribution of the
elastic deformation, which is small, and thus define the intrinsic time in
terms of the total deformation. Where plastic fluids are concerned, e.g.,
metals whose deformation {3 so large that they have lost cognizance of their
original configuration [52]. <.e then defines the rate of change of the

intrinsic time in terms of the total deformation rate tensor d More

13°
specifically,

( &2

where Pijkl should be an isotropic non-dimensional function of dlj for a

rate independent material.

The simplest form of P {s a constant tensor

ijkl
Pljkl =P Gljakl + Pa lesjl , (2.1.14)

where p, and p, are positive non-dimensional constants. Eq.(2.1.13) in
conjunction with eq.(2.1.14) yields the result:
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-

|

2
) = pldiidJJ + pzdijdij . (2-1.15) s

—~
Q-'Q-
Ty

when incompressibility applies, dli vanishes and

dg .2
( at ) = p‘dijdij ’ (2.1.16)
An intrinsic time scale z is defined to account for the hardening or

softening character of a material,

g _dg'
Z = IQ f(;') ’ (2.1.17)

where £(z) is a positive function of %. If no hardening (or softening) takes
place f(g)=1.
In the present form of the theory (see Ref.[52]), the free energy
density is specified as a quadratic function of Sr according to eq.(2.1.18):
rr {(r)yr r
¥ =¥, rAqr/2c 9 49 4 , (2.1.18)

(r)

where ¥, , Ar. and C are constants and q:J are the components of qr in

the spatial frame,

The implication of eq.(2.1.18) is that in the spatial frame the free
energy density does not depend explicitly on the deformation, a property
that one associates with a "plastic fluid", i.e., a material that is so
deformed that {ts structure in the reference configuration plays no role in
the determination of the Cauchy stress. Note that the form of ¥ in
eq.(2.1.18) satisfies material objectivity and material isotropy in the

reference state.

-12-




EQ.(2.1.18) is now expressed in terms of the covariant components of qr

in the material frame and it is these that will play the role of independent

variables in the thermodynamic formulation. Thus

rr af (r) r r .aY.B86
Y = ¥, +A tuC + 1/2 C anqYGC Cc , (2.1.19)
r ari ayj n
where q - —— = . (2.1.19a)
af axa axe i3

Note that contravariant and mixed components of qr in the material system

can be defined by the relations

aB

x® B (m)

(r) 73 3 9y

a

q(r)s -

(r)8
q a -

J

a ¥y
axi axB 1)

M B (r)

x® 5?; qij

’ (2.1.190)

' (2.1.19¢)

(2.1.194)

The 1internal constitutive equation (2.1.12) is now written in the

specific form

where b(r)

(r) “(r) 2Y¥
b tu M

38 0 ) (2.1.20)

aq(r)

are scalars and the roof denotes the derivative with respect to z.

It {mplies that the endochronic rate of change of the covariant components

of g(r)

should be proportional to the covariant components of the internal

_13-
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stress tensor éég , in which case E(r) {s of the form:
Ur)
(r) (r)
baBYs b GaY 686 (2.1.20a)

The solution of eq.(2.1.20) in conjunction witnh the form of ¥ in

a8|°' §,g) dictated by the

eq.(2.1.19) and the initial condition on 9 (q
fact that the Cauchy stress in the reference state can be at most a

hydrostatic pressure, {3 given by

(r) (r) A(r) -

A -a_{z-2") . ,
QQB--C?TCGB +C—(-r—)-f§e r CGB(Z ) dz N (2.1.21)

(r)

where g _=
r

b

On the other hand eq.(2.1.11) in conjunction with eq.(2.1.19) gives

Tae_ -p CaB_ 2(A(r)q?ﬁ)+ C(r)q(r):'q(r)s'ﬁ) (2.1.22)
or
- - (r) (r) ~(r) (r) (r)g*
Tag™ P Cog™ 2(A7 7a 7#C Ta gia T ) . (2.1.23)

Substitution of eq.(2.1.21) into eq.(2.1.23) gives the following

relation for the covariant components of the stress

ac_,
Tag™ P Cap* fgc(z'z') Gz '
dC  dc
—oHV 2 — - au _ Bv
c rg fo 6(2272,-22) —2 =2 a2z, . (2.1.24)

It was found from an analysis of the problems of simple extension and

Simple shearing that the contribution to the stress of the second integral

relative to that of the first {ntegral {3 of the order of 1/a? where a is of

- 14 -




the order of one hundred, this being the ratio of the elastic modulus to the
maximum stress (in tension'or in shear). In the subsequent analysis the
double integral was ignored with the result that the covariant components of
atress in the material frame of reference are gliven in terms of a linear

history integral of the right Cauchy-Green tensor CaB' Thus
- - - ! ' ' 1.
Toe™ P Cog’ [56(z=2") C 42z') dz . (2.1.25)
where

Z A(r)
G(z) = 2 e
- CZP)

Te.2Z . (2.1.25a)

For an extensive discussion see Ref.(52].

2.2 Description of Constitutive Equation in Curvilinear Systems

In order to describe the deformation in a curvilinear system, we set ¢B

and 8, to be ~ui'vilinear coordinaves for the materfal system x% and the

J

spatial system Y, , reapectively, as shown in Fig.l.

i
For the material aystem, we have the relation,

ofa oB(x% . (2.2.1)

The corresponding covariant and contravariant metric tensors GaB and GGB are

given by eq. (2.2.2):

K oK
ag” -35; 2‘—3 (2.2.2a)
30 3%
and
af
G = (17|G|) (cofactor of GaB) {2.2.2b)
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where |G| 1s the determinant of Gyge

The corresponding relations for the spatial frame are

8y= 0,(¥) (2.2.3)
g .= EEL EEL (2.2.4a)
k1”36, 36, -
and
gt (1/]8|) (cofactor of g ,) (2.2.4D)

The deformation map {(2.1.1) can be then written through eq.(2.2.1) and
(2.2.3) in terms of one of the following alternatives, depending on the

problem at hand:

8
Yi’ Yi(e .t) » (20205)
a
- X7, 2.2.6
eJ eJ( ) ( )
and
8
- , 2.
GJ eJ(¢ ) (2.2.7)
The Cauchy~Green deformation tensor C08 and {ts curvilinear counterpart
c are given below:
uv
39, 436
LS 1
C =g — (2.2.8)
aB klaxa axB
or {n matrix form
te1 - (F1T Cg) CF) : (2.2.8a)

where the deformation gradient matrix [F] is given by eq.(2.2.9).
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i

k 1
C =g, 6 — —=
uv o KL gab 3V
or
- -7 -
(cl = (F1" (gl (F1 ,
where
K gk

We now prove the following relations, as these will be of interest in

what follows:

(1) The incompressibility condition is given by

EEREN

Proof: From the tensor transformation,

x® ax?
3e” 3¢Y

Cuv - aB

Then

~ % T B
1C 0 = | 700 gl =5

T
ae™ 3

- n"]+n]

where ICQB | = 1 1s unity

and
8
X
Inj = | & |
3%

The proof is completzd by noting eq.(2.2.2a).

-17—
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(2.2.13)
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(2) The deformation-rate tensor dij is also given by

g8
x® x® .
d -1/2——-3—Y—1' CGB

13 arj . (2.2.16)

Proof: The rate of change of CaB is

av, 3Y 3Y, v, v v aY, 3Y.
- L L.t i1, Jdyd_1

C
aB ax® axB ax® aXB oY Y

3, Y
- 24 3 —-%— (2.2.17)
ax® ax

from which eq.(2.2.16) follows easily.

(3) The i{ntrinsic time scale can be obtained by means of the following

relation, derived by direct substitution of (2.2.16) into eq.(2.1.16).

(St arcll " c;; € )74 (2.2.18)
or
( dg )2 = (p,tr([D]))/4 , (2.2.19)
where
(0] = (eI acel Ce1”' dgel . (2.2.20)

In the same manner, we also can obtain dg from eq.(2.2.12)

( dz )? = (p,tr(CD]))/4 (2.2.21)

where

(0] = [c1”) ace] ce1”! ace] . (2.2.22)
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The constitutive eq.(2.1.25), upon use of the tensor transformation,

a 8
T T 3% 3¢ (2.2.23)
uv QB gyH gV
can be described in the curvilinear system as
t ==PC + f2G(z-2') C (2') dz' (2.2.24)
uv uv 0 HV
or
[1] = =P [C] + fg G(z-z') [C(z')] dz' . (2.2.25)
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Fig.1 Coordinate systems
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CHAPTER 3 - CLOSED FORM 30LUTIONS

To illustrate the application of the theory to the domain of finite
plastic deformation, in this chapter the ‘theory will be used to analyze a
set of special and yet practical problems. These problems are:

(1) large plastic uniform extensicn of a cuboid;

(2) large plastic shear flow {n a circular tube;

(3) large plaatic torsion of a circular bar;

(4) large plastic bending of a block:

(5) large plastic expansion of a sphere.

Closed form solutions for all problems are obtained. To our knowledge,
this (s the first time in the field that this set of problem are solved in
closed form solutions. In the course of obtaining the solutions the semi-
inverse method is used. The deformation field is derived from the condition
of incompressibility to within a set of unknown parameters, which are then
determined by satisfying the equilibrium and boundary conditions.

In order to find the complete solutions for these problems, we need to
know the kernel function G(2) in the constitutive equations (2.1.25),
(2.2.24), and (2.2.25). In the development of the endochronic theory of
plasticity in the region of infinitesimal deformation, the kernel function

was discussed thoroughly. There, G(z) was required to be weakly singular at

the origin but integrable in the domain 0SzsS~, {.e., G(Q)== and IfG(z)dz(-.'

This requirement leads to the following consequences: (1) it gives rise to
closed hysteresis loops, (2) it ensures initially elastic unloading, i.e.,
inftially zero rate of dissipation upon unloading, but (3) it implies an
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{nfinitesimally small elastic domain. Two expllicit algebralc forms were

discussed at great length in (45]. They are

Po 1 -q Z
(1) - G(z) w~— T Ge r (3.1)
4 T

where 0<w<l, p,4>0, Gr>0' and arzo for all r, and

(11) Glz) = ¢ cre"’rz (3.2)
1

with the conditions that Gr and . be positive for all r,

,z Gl" - ® , (3-33)
and
L Gr/°r< ® (3.3a)

1

The determination of the material functions (s very important in order
that the plasticity theory can be developed and applied. It i{s a task
involving a considerable amcunt of experimental investigation and
theoretical analysis. This {s not a object of the present dissertation. In a
recent work [S4], the kernel function was determined by a strain controlled
cyclic teat. The kernel function G(z) was given by the slope of the cyclic
plastic strain-stress curve for the shear test at a steady state. The
hardening function r(g) of eq.(2.1.17) was determined from reversals of the
eycllc shear test. Fan [55] determined by an approximate method the material

functions which were convenient for engineering application.
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In this work, to demonstrate the application of the theory, eq.(3.1) or

eq.(3.2) are not applied to a speciflc material in detail. Instead, just for

a convenience of calculation, an approximate form
G(z)=Gae 2 (3.4)

will be taken in problems of uniform extension, bending, and expansion,

while
G(z)mpy/2" (3.5)

in the problems of shear flow and torsion. These kernel functions represent
simple and yet realistic cases [52,53]. For numerical calculation, a will be

set to 200 (this number is characteristic of pure aluminum with a tensile

modulus of 107 1b/in? and an ultimate stress of 50x10%1b/in?, a being their

ratio.) and o to 0.86 (from (48] for normalized mild steel).

3.1. Large Uniform Plastic Extension

Uniform extension of a unit cube is considered. Taking Cartesian
coordinates x* and yi (which parallel the sides of the undeformed and

deformed bodies) as the material and the spatial coordinates, respectively,

the deformation fleld can be expressed by the following relations:

Yo o= A (E)xt, oy, = 2, (0)x?, oy, = Ay(t)x? (3.1.1)

where \,, A,, and i, are the stretches in the x!, x?, and x* directions

respectively, A, >1 corresponding to extension and O<Ai<1 to compression.

i
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For a particular case of simple extension under a force parallel to the x!

direction of the cube, as shown in Fig.2, we have 1,;>1 and 0<A,=1,<1.

The Cauchy-Green deformation tensor is

A0 0
(cl]=1]0 A2 0 (3.1.2)
0 0 ¥ .

For {ncompressible material [C|= A} A} = 1, i.e. A,= (1/A,)1/2. Hence the

deformation for an incompressible cube becomes

Yoo XY, ys = (174)) L oye e A% L (3.1.3)

The Cauchy-Green deformation tensor now becomes

A2 0 0
(cl]=|0 1/a, O (3.1.4)
0 0 1/i .

Then the inverse and the increment of Cauchy-Green tensor are given by.

( 1
/2% 0 0

(cl =]o Ay 0 " (3.1.5)

and

..2[_‘-




2r,dx, O 0]
-2
0 “x,°dx, O (3.1.6)
0 0 -alld, .

With direct substitution of eq.(3.1.5) and eq.(3.1.6) into eq.(2.2.20), the

intrinsic time is obtained as

(dz)2= 3p,/72 (dr,/A,)? . (3.1.7)

’ s
b 4 Setting p, equal to 2/3 (the actual value of p, is immaterial for all

problems in this paper), (dg)?= (dir,/1,)%. For monotonic extension,

dg=di,/A, . Upon integration, ge=ln(i,)+c, where ¢ is an arbitrary constant.

The condition =0 for i,=1 requires that c¢=0 and Z=ln(i,). Neglecting
h hardening (or softening) effects in the material, f(z)=1 and dz and z are

obtained as shown in eq.(3.1'.8).
\

dz-dl,/li y Z‘ln(ll) . (3.1.8)
» With the help of eq.(3.1.8) [C] Ls given below,
(ZA} 0 0
- 41
{fcl=}oO -, 0 (3.1.9)
0 0 a7 .
\ /

3
P Setting GeG,e az' the stresses are obtalned upon use of the constitutive

equation (2.1.25) as follows,
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2Ga a+2
Ti11* l? E‘P" —TG_T (1 = 1/A )] ’ (3.1.103)
Go a1
Tzz. T’, - 1/X1 [—P - Ta__,) (1 - 1/Xl )] (3-1.10b)
and
Ty2® Tay = 1,, = 0 . (3.1.10¢)

The components of the stresses in spatial coordinates are given by

2G a+2
Tll- -P"' -G';LZ—) (1 - 1/X, ) » . (3.1.113)
1
‘rzz. Tg‘ - ‘P 7%31_)- (1 - 1/‘?- ) (3-1-11b)
and
le- Tz’ - Tl! - 0 - (3.1.110)

In the absence of body forces, equilibrium in the deformed body with the

stresses in eq.(3.1.11) gives 3p/3y,= 3P/3y,= 3p/3y,= 0 , L.e., P is a

ecnatant. This constant is determined by satisfvir; the boundary conditions.

In the present case, T,, and T,, are zero at the edges in y, and Y3

directions. Hénce,

Go

=5 ' - 1257 . (3.1.12)

P =
Substituting eq.(3.1.12) into eq.(3.1.11), the only no-vanishing stress T,,
(normalized by G,) is given below,

T,,/Go = (- 1%% . %— (-l (3.1.13)

—2_
a+2
while the resultant force i{n y, direction is given by

3a

F/Gy = TiiM/Gy = Torgm 1/ A0 ) i (125 3) ——0nd . Gaaw
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when A, becomes very large , T,, approaches a constant given by

3aG,

Tiae ) =) . (3.1.12)

However, aince the cross sectional area of the cuboid decreases with A,, the
resultant force will decrease after a critical value of A, and will go to
zero as i, goes to infinity. The variation of T,, and F with A, are shown in

Fig.3 and 4.

3.2. Large plastic flow in a circular tube (pipe flow)
Consider a case of pipe flow in which each point in the material moves
parallel to the axis of the pipe through a distance f(r) depending only upon

the radial position of the point.

Taking the cylindrical polar cocrdinates oa(R,e.Z) in the undeformed

body and eJ(r.e,w) in the deformed body, the deformation field is expressed
as follows:
r=R, 9=8 , weK(t)f(r)+Z . (3.2.1)

where K {s a positive function and the deformation corresponding to positive
stresses is shown in Fig.5.

The metric tensor in the material system {3

1 0 0
-» 2 - 2
(G, 42 0 R* O . [Gygl =R (3.2.2)
0 0 1
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te
=
v

and in spatial system

1 0 0
- 2
Egkl] =|{0 r* 0 . lgkll r . (3.2.3)
0 0o 1

The deformation gradient is

1 0 0
(F1=]0 1 O (3.2.4)
K£' 0 1 )

where f'=df/dr. The Cauchy-Green deformation tensor, derived by use of

eq.(2.2.10a), is
1+K2£'2 0 ~Kf'
(c ]~ 0 rz 0 . |C |erz (3.2.5)
[T}V

-Xr 0 1

The incompressibility condition {3 satisfied automatically since

|C |=|G ,|. The inverse and the increment of [C ] are
BV kl uv )

«

1 o Ke
[Euv]“ =lo e oo (3.2.6)
| ket 0 1ek2r0)
and
2KE'2dK 0  -f'dK )
d[EW] - o o0 o (3.2.7)
-£'dK 0 o .
. - 28 -




tThe intrinsic time can be found from eq.(2.2.22) to be

(dz)2= (£'dK)? ’ (3.2.8)

where P, has been set to 2. For monotonic shearing, dr=f'dK. After an

integration and imposition of the initial condition, =0, at Ka0, it follows
that ¢=f'K. Upon neglecting the effect of hardening (or softening) of the
material, dz and z are

dz=f'dK and z=f'K . (3.2.9)
Now The Cauchy-Green deformation tensor i3 rewritten with the help of

;g eq.(3.2.9) in the form

= 1422 0 -z
: 7. .
[cuv] 0 r 0 (3.2.10))
-2 0 1

2z 0 -1
dczdz = | o 0 0 (3.2.11)
-1 0 0 .

Setting G(z) = p,/za, the stresses are obtained by use of the constitutive

equation (2.2.25) in the form

T P(1+22)+20,/ (1-a)/(2-a) 2270 (3.2.12a)
;Rz-Pz*p,/(1-a) 217 (3.2.12b)
—Pri | rzz-P v Tre” Tgz° 0o . (3.2.120)




-

The components of stress in the spatial curvilinear system T are given by

: Z u -p- —g) 2(2"®) z 2 :
51"; Trr P-2p,/(2-a) 2z ’ Tee-Pr ’ 'I‘ww P, (3.2.13)
[;f' = (1-a) = —

‘g? Trw' po/(1=a) z and Tre Tew 0
*ﬁ{ while the physical components of stress in the spatial system are given by
. Opp™ “P*81 4 GggT 0= 7P,
- - - - .1“
0.~ 82 and 9™ gy 0 (3.2.14)
where .
(2-a) (3.2.14a)

g1= -2p,/(2-a) 2(27a) -2p,/(2=a) (£'K)

and
8a= ~po/(1-a) 2(14°)- -po/(1-a)(f'K)(1-°) (3.2.14b)

In the absence of body forces the equations of equilibrium along with the
of eqs.(3.2.14) give the relations,

stresses
-3P/3r + 3g,/3r + g,/r = 0 , (3.2.15a)
-3P/3w + 3g,/3r + g,/r = 0 (3.2.15b)
and
(3.2.15¢)

-3P/38 = 0
The last equation requires that P be a function af r and w only. Since g,

depends on r only, equation (3.2.15a) requires 32P/3raw=0. Thus,
(3.2.16)

P = Cow + Y(r) ,

where C, 1s a constant of integration. From equation (3.2.15b),
82 =C,/r + Cyr/2 . (3.2.17)
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N ‘
where C, is another constant of integration. To ensure a finite solution at
r=0 , C, must be zero in eq.(3.2.17),
g2=Cor/2 . (3.2.18)
Recalling the expression of g, in eq.(3.2.14a), it follows that
Cor/2 = =po/(1-a) 178 (3.2.19)
Solving for z from eq.(3.é.19), one obtains
) 2 = [~Col1-a)/2p,]"/ (17@)p1/(1ma) (3.2.20)
Introducing z into g, in (3.2.14a) and then substituting g, and P in
eq.(3.2.16) into the first equation of (3.2.15),
e _aum) e OO (ang)(1-a) 3oy (2ma)/C1ma) | (5, 0, |
ar or 2-a 20, 1-a * te h

After integration of eq.(3.2.21), the pressure P i3 obtained as

200(3-2a) -C,(1-a)

(2-a)/(1-a)r(“-3a}/\1-a)

P »Cyw +D - , (3.2.22)

(2-a)? 200
where D (s a constant of integration. The constants C, and D are determined
by imposing the boundary conditions.

A case of pipe flow with the following boundary conditions (s now 1

considered: L

(1) at we0, -F = I?Zwrowwlw_odr )
(11) at wel 0= I?Zwruwwlw_bdr (3.2.23)
(111) at r=a £(a)=0
—31-
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Upon satisfying the boundary conditions (1) and (i1) in eq.(3.2.23) the

following equations are obtained:

, Jpo(3-20)(1-a) *Col17a) (n_ 1y, (1-q) (4-3a)/(1-q)
-F = -Dma > a
(2-a)? (4-3a) Po (3.2.24)

and

Up,(3-2a)(1=a) =C,(1-a)
O=-Dwa2-CoLwa? +—

}(2-0)/(1-a)a(U-3c)/(l—a)
20,
(2-a)? (4-3a)

faretid

Solving the simultaneous equations (3.2.24), The constants C, and D are
obtained as

Co = -F/(Lwa?)

and (3.2.25)
Up,(3-2a)(1=a) =C,(1-a)

D =« F/(wa2) + (2‘0)(T‘B)P(2'a)(f°a) .

(2-a)?(4-3a) 200
~Finally, the following non-vanishing stresses are obtained and are given by

eq.(3.2.26)

o,/ Po= ~B(r/L)/2 (3.2.26a)

3/ Pom GggfPam B(W/L-1)=2(3420)/(2-a)2[(1-a)/2.8]27®)/(170),

H{(2(1=a)/ (4= 30) (/1) (B2 C170) (g, (270)/ (1)

(3.2.260)

Gpp’ Po= cww/p,~2/(2-a)E(1-0)/2-8](2-°)/(1-°)(P/L)(?-a)/(1-a)

where (3.2.260)

B = F/(wpya?) . (3.2.26)
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The displacement in the w direction, u,= w=2Z = -Kf(r), can be obtained

by an integration of the expression z=Kf'(r) in eq.(3.2.20) and is given by

]1/(1-3) (2-&)/(1-0)*

Ke=(F(1-a)/(2Lwal%p, [(1-a)/(2-a)]r Cy . (3.2.27)

Imposing the boundary condition (iii) in eq.(3.2.23) gives the integration

constant C,,

Cym -[F(1-0)/(2Lmatpy ]V V0L (1-0)/(2-q) 1a(2 )/ (1=0)

(3.2.28)
"Hence the displacement u,, normalized by a, the radius of pipe, becomes

{(1-a) 17(1~a)

us/a = = == [(1-u)/2'8]1/(1-a){(r/a)(r/L) -(a/L)1/(1-°)} .
(3.2.29)

It is noticed that u, reaches a maximum value at r=0, which is

1,(0)/2 = —m=BL. La(q-q)s2]!/ (1) g1/ (1-a) (3.2.30)

(2=a)
The above solutions can be used to analyze the process of metal
extrusion {n a cylindrical die. The condition to move a bar of length L and

radius a is given by ¢ (o )c at rea, (g

-
rw rw

rw)c is t?he factor representing

the surface condition between the metal and the die. When F increases until

F ] reaches the critical value (°r

e’ Tpy )c at re=a, The metal bar starts to

W
@move in the die with the shape of u, corresponding to Fc.

F e

e ZL"a(arw)c (3.2.31a2)

us/a @ - 228 [(1-a)/208 0" 7P {(ra) (r/e) VO () V079

where (3.2.31b)

8= Fc/(wp.a’)
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Wwith o= 0.86 a numerical example is given as follows. Fig.6 shows the
deformation profile for various parameter B, Fig.7 gives the relation

between deformation u, and the parameter B , {.e., the applied force, at

r«0. 0

r

w is a linear distribution over the cross section of the pipe, orw-o

at r=0 and O™ Ba/2l, at rsa. The distribution of L and L over the cross

sections w=0, and w/L=0.5, are given in Fig.8 for the case of a/L=0.2, and
8=70.
3.3. Large plastic torsion of circular bar

Consider a uniform solid circular bar of radius a. The one end of the
bar is fixed. The other end is subjected to an angle of twist due to applied
torque T. The bar i{s also assumed to be constrained axially, thus allowing

the possible development of an axial force F. The deformation field is the

following:

r=R ,

9=9+k(t)Z (3.3.1)
and w=Z

where (R,8,Z) and (r,8,w) are the cylindrical coordinates for the material
and spatial system, respectively. Eq.(3.3.1) implies that the planes
perpendicular to the axis ;f the bar are rotated in their own planes through
an angle proportional to the distance of the plane from the fixed end, k is
the twist per unit length.

The metric tensor in the material system is

1 0 o
- 2 el 3
(G ] ¢ R* O " |ca8| R (3.3.2)
0 0 1
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and in spatial system

1 0

0 0

1 0
(Fl1=]o0 1

0 0

- 2
Ezkl] 0 r

The deformation gradient is given below,

0

1 -

ngll'rz . (3.3.3))

(3.3.8)

The Cauchy-Green deformation tensor can be derived by use of eq.(2.2.10a),

(C ]=]o0 r2
MV

The incompressibility is again satisfied since lcuvI-IG

rikia

the increment of [cqu are given by

(

¢ ]-1 - 1/r?
MV

r2 Q 0

0 r3k?*+1 -rig

0 -r3k r?
\
and
[0 o 0
- o
d[Cuv] ridk 0 0 1
0 1 2k
\
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uv

1|+ The inverse and

(3.3.6)

(3.3.7)




LI RN

(dg) %= (rk)?

The intrinsic time can be obtained as

(3.3.8)

where P, has been set to 2. Under the condition of monotonic torsion,

dg=rdk. After integration and consideration of a zero strain inittal

condition, g=rk. Neglecting hardening and softening effects, dz and z are

given below,

dz=rdk, Z=rK

(3.3.9)

Hence, the Cauchy-Green deformation tensor can be written as

4

1 0

(cC ]=]o r2
uv

Then,

0 r

.

0

rz

z23+1
V.

22

/

N

(3.3.10)

(3.3.11)

Again taking G(z) = p,/za. the following stresses are obtained after

substitution of eq.(3.3.10) and eq.(3.3.11) into eq.(2.2.25) and then

integrating the resultant equations,
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Tag™ P Tog”™ -Pr=, e~ Trz" o ,

T, =—P(z2+1)+ ik 2(37a) (3.3.12)
YAA (1-a) (2-a) Lo

and ;GZ = —Prz*[p,/(1-a)]-r-z(1—a)

The stresses {n the spatial curvilinear system T can be obtained by tensor

transformation as follows:
- 2 -~ (2-a
T =~-P, T, =Pr ’ Tww"P‘EZDo/(Z‘G)]Z ,

- 1- ~ -
Tew- Ep,/(1-a)]-r-z( a) and Tre- Trw- 0 (3.3.13)

The physical components of the stresses in the spatial system are

(2~a)
Opn™ Tgq" P, O T [2p4/(2-a)] 2 ,

Tou " {po/(1=a)] 2(1-°)and Ong® Tpy” 0 (3.3.14)

When body forces are zero, the equilibrium equations with the stresses in
eq.(3.3.14) give 3p/3r=0, 3Ip/38=0, and 3p/9z=0. This states that P is a
constant. If the surface of the cylinder rsa is to be free of tractions,

°rr'o there. Hence P must be equal to zero. Consequently, the following non-

vanishing sﬁresses yield

0y, = Loo/(1=a)1(rk) 17 (3.3.15a)

o, 200/ (2-a) (ri) (27 (3.3.15b)

Clearly there {s no any integration consatant available, the forces at the
eénds can no longer be controlled for the prescribed deformation field. The

resultant force F which is needed to maintain the length of the bar during

the deformation can be calculated as
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U 2-
F/(peat) = (F3a [2nrar)/(pea?) = grmamgy—tka) ¥ (3.3.16)
while the resultant torque as

2 1=
T/(poa’) = (I:2wce"r’dr)/(p°a’) - TT:;%TE:ET (ka)( a) . (3.3.17)

Solving for k from (3.3.17), the twist per unit length is obtained and given

by eq.(3.3.18),

k = 172 [T/(p,a’) 11:3%13:3111/(1-a) (3.3.18)
The total twist angle at any station w can be obtained as
A8 = 8-0 = kz = (w/a)[1/(psa?) Lmalli=a) 1/(1=a) (3.3.19)

2rx
The numerical results with a=0.86 are given in Fig.10 - Fig.13. Fig.10 and
Fig.11 show the variations of the torque and axial force vs. the twist,

respectively. The distributions of 9 and 0w over the cross section are

e
given in Fig.12 and Fig.13. It is interesting to observe that for relative
small k (k<<1) the torque increases more rapidly than the axial force,
however for relative large k (k>1) the axial force increases much faster
than the torque. For the elastic case when a=0, in eq.(3.3.17) and

eq.(3.3.16)
T = (wp,a®/2)k , F = (wpea®/2)k? (3.3.20)

For {nfinitesimal deformation, k<<1, F vanishes. The results agfee with

those from the theory of elementary mechanics of materials.
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dr/dx?

(F] = 0

1 0 O
& Cgkl] =10 r2o
0 0 1

The deformation gradient

3.4. Large Plastic Bending of a Block

into a2 portion of a cylinder as shown in Fig.14. Letting ©

r o= r(X,t) ,
0= 6(x2.t)

and we= wiXt)

-

matrix is
0 0
de/dx? 0
0 dw/dx? )
—39..

Let a block, bounded by the planes Xi= a,, Xi= a,; and X2?= zb; X’= ¢

in the undeformed state, be deformed symmetrically with respect to X! axis

J(r.e,w) be

coordinates in deformed state, the deformation map can be stipulated by

(3.4.1)

It will be shown presently that the condition of incompressibility restricts
the deformation given by eq.(3.4.1) to a form where a plane of constant X!
deforms to a surface of constant r; a plane of constant X2 to a plane of

constant 8; and a plane of constant X® to a plane of constant w.

The metric tensors in the spatial system are

1 0 o

and (g¥*1 = 0 1/r2 0 (3.4.2)



i Hence the Cauchy-Green tensor {s

AN

(dr/dxt)? 0 0
{c] - 0 r3(de/dx?)? 0 (3.4.3)
0 0 (dw/dx®)? .

The incompressibility requires that
(r dr/dX')(de/dX?) (dw/dX?) = 1 . (3.4.4)

*=> Since r depends on X! and t only; 8 on X* and t; and w on X? and t, the

following must be true at all timeﬁ,
r dr/dX! = ¢,(t), des/dX? = c,(t), dw/dX® = c,(t)
and c (L) c(t) e (L) = 1 (3.4.5)
Integration of eq.s(3.4.5) give the following deformation field,
r3/2 = c,X! + A,(t) ,
8 = 0 X2 + A, () (3.4.6)
and Wos g X o+ AL(L)
where A,, A,, and A, are the constants of the integrals.

Considering the plane strain condition (ey4=1, A4=0) and excluding rigid

body'rocation (A;=0), the deformation field becomes

r3/2 = R X'+ A(L) ,
8 = (1/R) X2 (3.4.7)
and w =X .
- 40 =
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where the facts that ¢, ls the curvature and ¢

1 the radius of curvature of

the deformed cylinder have been used. The Cauchy-Green tensor and its

{nverse now become

/¢ 0 0 Q2 0 0
cl=| O Q* 0 and  [c]'e]o0 1@ o (3.4.8)
0 0o 1 o 0 1 ,
where Q = r/R. The increment of [C] is
-20734q 0 0
acl=| o 2QdQ 0 (3.4.9)
| o 0 0

The intrinsic time can be obtained from eq.{2.2.15) and eq.(2.2.16) whereby

(dg)? = [(1/Q)dQ]? (3.4.10)

where P, in eq.(2.2.15) has been set equal to 1/2.

For monotonic bending df = (1/Q)dQ and ﬁhen T = 1n(Q)+c after {ntegration.
Since =0, for Q=1, hence c¢=0. Neglecting hardening or softening effects,
f=1 and dz and z can be derived as shown in eq.(3.4.11),

dz = (1/Q)dQ

z = 1n(Q) (3.4.11)

With the help of (3.4.11) C is given below:

-2q73 0 0]
(Cl=Q |0 2Q 0 (3.4.12)
| 0 0 0
- 41 -




raking G(z) = G.e-az, the 3stresses are obtalned, upon use of the

constitutive eq.(2.1.25),

2 (a-2)
Ty1= (1/7Q3)[-P-(2G,/(a-2))(1-1/Q 1,
2 (a+2)
T,ya= Q¥[-P+(2G,/(a+2))(1-1/Q )], (3.4.13)
T,s= -P, and Tyi2® Tas= T15=0 .

The components of stress in the spatial curvilinear system are given by
eq.(3.4.14),

- (a=2)

Trr- =P =(2G4/(a-2))(1-1/Q )

T, = r3[-P+(2G,/(a+2)) (141/q{®*?)

) B I (3.4.14)

Tw- -P, and Tre- Tr‘w- Twe- 0 .

while the physical components of stress in the spatial system are given by
eqo(3ouo15)'

o= =P=(26G,/(a-2)(1-1/Q{%"2

rr ) ’

(a+2)

0" =P+(2G4,/(a+2)(1-1/Q ) , (3.4.15)

%
O™ -P and 9ng™ Our™ %au" 0 ,
where P will be determined from the equilibrium equations and the boundary
conditions.
When body forces are absent, two of the three equations of equilibrium,
in the 8 and w directions, are satisfied identically if the stresses in
(3.4.15) are functions of r only. The remaining equilibrium condition is

given by eq.(3.4.16):
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=0 . (3.4.16)

gubstituting the expressions for the stresses in eq.(3.4.15) into
eq.(3.4.16) and integrating, the following relation for P is obtained,

2G,

Pa- =3 [1a(r/r) (3720}

+ZGo{‘20/(a’-u)ln(r/c)°1/(a-2)Z(R/r)(a-Z)}

-1/(a+2) 2 (r/r) (8*2))

’ (3.4.17)
where ¢ {3 the constant of integration.

Normalized by 2G,, the non-vanishing stresses in (3.4.15) with the help of

eq.(3.4.17) become

0./ 26e= 20/ (aP=W)1n(r/e)+1/(a2) 2 (Rre) T a1/ (@e ) are) (0P, (3.008a)
04/ 2om 20/ (a?=M)[1+1n(r/0) I-(a=3)/(a=2) 2R/} (&2 (3.4.18b)
~(a*1) /(a2 2 (R/r) (32
0,/ 2Gom 1/(a—2)+2a/(a*-u)ln(r/c)-(a—3)/(a-2)’(R/r)(°'2) (3.4.18¢)
w1/ (ar2) 2 (i) (8°2)

where the constant ¢ will be determined from the boundary conditions.

Suppose that the undeformed surfaces of the block a,=0, a,=H, belL/2,
and c=1/2 in Fig.2 map into the deformed surfaces rer,, r=r,, and 8=8,. The

following geometrical restrictions must hold:
(a) Re(ri-ri3)/(H);
(b) 8,=L/2R and {n the case in which

the beam is bent as a circle, R/HsL/(2Hw). (3.4.19)
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v e mw— & = e

(¢) A=(ri+r3)/4RH

The boundary conditions appropriate to the bending of the block are the

following:

(1) L f, at rer; 0 =, at rer, ;

rr

(2) the resultant moment and the resultant force acting on the surface

initially at X? = tb/2, are

r,

M= fr,°eerdr (3.4.20a)
ra L

F = IP,G_BG dr = frl d(f‘orr) - r'zrz-rlrx (3.“.20b)

Upon satisfying the boundary conditions stipulated in eq.'s(3.4.20a,b) we

obtain the following five equations relating the six variables r,, r,;, ¢, R,

M, and F.

)(u-2) (a*Z)_

2a/(a?-4)1n(n,/d)+1/(a=2)3(n/ n, +1/(a+2)2(n/n,) g,

)(0‘2) )(a+2)_ g

2a/(a?-4)1n(n,/d)+1/(a=2)* (W n, +1/(a+2)*(n/ n,

2

T » 2a/(a?-4)[((n3/2)1n(n,/d)=(n3/2)1n(n,/d)+(n3-n3)/ 4]
+(a=3)/(a=2)2/ (@ (0/ny) ¥ P nz- (vn) 9z ] (3.4.21)

s(a+1)/(a+2)2/a (v ng) %P ni- (n/n)(®* 0

S = N8y~ M8,

n=1(n} -n1)/2




;' SN . T
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m=ry/H, Ma=r,/H , n = R/H , T = M/(2G,H?), d = c/H

S » F/(2GoH) , g,= £,/(2G,), and g,= £3/(2G,) (3.4.22)

The problem of interest here i{s the one in which the radial boundary

stresses f, and f, are equal to zero. The solution then reduces to assigning

a value to R, the radius of curvature of the neutral axis. Eq.'s(3.4.21)

then determines the deformed radii r, and r,, the constant of integration c,

- ¢the moment M and the end force F which {3 zero in this case.

B e

- Specific cases

o ERE

case (1): A very thin beam.

As the first example, consider a pure bending of very thin beam. Let §
be the distance from the neutral axis. Th~n '=R+§ , and £/R<<1. Employing

the Taylor expansion,

. (R/m) @72 1-(am2) (e/R); (R/e) 972 1o(ae2) (e/R) (3.4.23)
The non-zero stresses (3.4,15) become
°rr' -P=2G4,E/R ; aee- -P+2G,&/R ; T -P (3.4,.24)

Satisfaction of the equilibrium eq.(3.4.16) gives the preasure as

P=-2GE/R+*c (3.4.25)
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Introducing (3.4.25) into (3.4.24),

O™ "C 1 Og," UG,E/R -c 9 2G,5/R -¢ . (3.4.26)

The boundary condition, °rr'0 , at g=§,,E, gives the {ntegration constant

¢=0; and the condition of zero resultant force at the ends of §-direction

yields §,=—§,=h/2 ,where h i{s the deformed thickness of the beam. Then,

oeé- 4G,E/R , o, 2C.E/R , M = G,h*/(3R). (3.4.27)

The results here are the same as those in the elastic deformation of pure
bending except the stress in w-direction which is required to produce plane
strain conditions in the presence of incompressibility. Evidently the

strains in this case are extremely small resulting in an elastic solution.

Case(ii): A thick beam.

Now consider an example of pure bending of a thick beam. In this case

the zero resultant force F=0 and f,=f,=0. Therefore, g,=g;=0. thus,

(a=2) 1/ (g+2)2(n/n,) (320

2a/(a*=-4)1n(n,/d)+1/(a=2)%(n/n,) 0

20/ (a3=#)1n(ny/d) +1/(a=2)* (n/n,) (%72 (a+2)_

+1/(a+2)*(n/n,) 0

n=(n; -ni)/2 (3.4.28)
T = 2a/(a2-4)((n3/2)1n(n,/d)=(n3/2)1n(n,/d)+(n3-n2) /4]

+(a=3)/(a=2)2/(a~ W (v n) ¥ n2- (n/n) D g2 ]

+(a+1)/(a+2)?/a [(n/nz)(a¢2)

ni- (n/m) 3

(a‘z)nz ]
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Eq.(3.4.28) is a set of non-linear equations. The following procedure is
used to get some numerical results for this set of equations.
(1). Eliminate the constant d from the first two equations of (3.4.28) to

get one equation involving unknown n,, n,, and n.
™ (2). Use the Newton iteration to solve n, and n, for given n from the

resulting equation from step (1) and the third equation in (3.4.28),

;f; which are,

= 20/ (at=1)1n(n)+17(a=2)2 (/) ¥ 2 e1/(ae2) 2 (nrmy) (9420

20/ (a?=8)1n(ny)+1/ (a=2)2(n/ ny) ¥ 2 41/ (a+2) 2/ my) (842
n=(n -nt )2 (3.4.29)

(3). Obtain the constant d for corresponding n, n,, and n, from either one

of the first two equations in (3.4.28).

“4,. Obtain T from the laat equation in (3.4.28) for correspending n, n,,
ny, and d.

Before formulating the numerical solution scheme, the existence and the
unfqueness of eq.(3.4.29) is first discussed. Look at the following

function,

r(x)-Za/(a*-u)lnx*1/(a—2)‘(n/x)(a_2)+1/(a*2)’(n/x)(a*z) (3.4.30)

where x may be n, and n,. For given n, when x approaches zero, f(x) goces to

infinity. When x tends to infinity, f(x) goes to infinity. f(x) has one and

only one minimum at xm approximately equal to n, since a i3 a large number

ranging from 100 to 2Q0, xm-n is the root of following equation,
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(a-2) (a+2)

f(x)'-[Za/(a’-u)-(n/xm) /(a-2)+(n/xm) /(a+2)]/xm-0 (3.4.31)

Fig.15 depicts the character of function f(x). It can be seen that for a
value of f(x), there are two roots(except the case in which the minimum is

also the root) corresponding to n;, and n,. One-one relation I is shown in

Fig.16 from the first equation (3.4.29). On the other hand another one-one

relation II is also shown in Fig.16 for positive n, and n, from the second
equation of (3.4.29). The intersect of I and II gives the solution n; and n,

for given n.

The Newton iteration scheme [56] for (3.4.29) can be written as

m, n, 9¢,/3n, 3¢,/3n; - $,

' - 4,32

nz 1*1 ”z i 3¢z/3m a¢2/an2 1 ¢2 i (3 3 )
where ¢, and ¢, are

(a=2) (a=2)

¢, = 20/(03‘1‘)11'1(71;/\'1;)*[(71/Th) -(n/nz) ]/(a_z)l +

(a+2) (a+2)

+ [(n/ny) ~-{(n/ny) 1/(a+2)? (3.4.33)

and ¢z-2n—n§+n}

Numerical results were obtajned after setting a=200. Fig.17 shows the
variation of moment with the curvature. There is a softening effect in the
Sense that the moment decreases with increase in curvature after a critical
Yalue of the curvature has been reached. However this {s a geometric

Phenomenon since all stresses increase monotonically with curvature. Fig.18
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shows the variation of Cpp with curvature at the neutral axis while in

Fig.19 and 20 we show o at rar, and r=r, . As the curvature increases the

ee
neutral axis moves closer to the compressive surface of the beam thereby
requiring a large compressive tangential stress to maintain moment
equilibrium. The material can sustain a large compresasive stress by virtue

of its incompressibility. Fig.s 21-23 show the distribution of aee over the

cross—-section of the the beam for values of R/H of 50, 5, and 1. The stress

LI {8 zero at the neutral axis as expected. Fig.s 24-26 show the

distribution of L over the depth of the beam for values of R/H of 50, 5,

and 1, Observe that °rr i3 about two orders of magnitude smaller than 998

and reaches maximum value at the neutral axis.

3.5. Symmetrical expansion of a thick spherical shell

Identify the curvilinear coordinate systems @a in undeformed bdody and

eJ in deformed body with the system of the spherical coordinates (R,¢,3) and

(r,¢,8), respectively. The deformation of the symmetrical expansion of a
thick spherical shell can be described as

r =r(R,t) , ¢ 29, 8 =8 . (3.5.1)
In the material system metric tensors is

-

[ 10 0

- 2 -R* 2
[GaB] 0 R 0 , |Ga8| R*sin?9 (3.5.2)

{ 0 0 (Rsino)ﬂ
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and in spatial system

&3 1o 0o ]

" :§ - 2 apt 2

% (8pgl =0 7% O v lggglertsine . (3.5.3)
;g; | 0 0 (rsine)?]

2
k4

Nt

s

The deformation gradient matrix is given below,

;§§4 rr0 0
= F1=l0 1 o (3.2.8)

0 0 1 ,

\

where r'=dr/dR. The Cauchy-Green deformation tensor is

(cl=]0 r* o0 , [C|= r'2r*sinZz¢ . (3.5.5)

0 0 (rsin¢)?

For incompressible material,

r'*r*=R"* , i.e., ridr=+R2dR . (3.5.6)

Positive sign in eq.(3.5.6) is taken for expansion of the sphere. After an

integration, r?= R?+A(t). Therefore, the deformation (3.5.1) becomes

r = [R¥+AC)]'/3, 6 =0, 8 =0 . (3.5.7)

Consequently, the Cauchy-Green deformation tensor becomes

R*/r* Q o ]
[(Cl=]o r? 0 ' |C|= r'?r*stn?s . (3.5.8)
| 0 0 (rsin¢)1
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> Then the inverse of the Cauchy-Green tensor is

r*/R* O o]
i1’ -] o /et 0 (3.5.9)
o} 0 1/(rsing)?

while the increment {s

-4(R*/r%)dr O 0
a(C] = 0 2rdr 0 (3.5.10)
0 0 2rsin?gdr .

The {intrinsic time can be obtained by substitution of eq.(3.5.9),

eq.(3.5.10) into eq.(2.2.22) as

(dg)2=(dr/r)? , (3.5.11)

where p, has been set to 1/6. For monotonic expansion, dg=dr/r. After an

integration, r=ln(kr), where k i3 a constant of integration. Since z=0, for
r=R, hence kR=1, {.e., k=1/R. Neglecting the hardening and softening effect,
dz and z are obtained as follows,

dz=dr/r , z=ln(r/R) . (3.5.12)

With the r:lp of eq.(3.5.12) d[(C]/dz 1s given below,

-4(R*/r*) O 0
d{C)/dz = 0 2r? 0 (3.5.13)
0 0 2r2sin?y .
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F T o

az

" raking GuGo,e %, the following stresses are derived by use of the

constitutive equation (2.2.25),

. . 4G, -

Tog™ (R/T) {-p - = (1=(r/r)" 1} ,

2G,

- a+2

Toe™ r2{-p + a2y (1-(R/r)" "1}

. 26, 4e2

oo r2sin?¢ {-p + o5 (1-(R/r)" <1} (3.5.14)
and  Tpg™ Teg™ Tep™ O

The components of stresses in spatial curvilinear system are

4G,

= x4
Trr_' -p - W (1=(R/r) ]

i z 2G, 2
T°¢- r2{+4p + T} [1-(R/r) 1}

- 2G, .
ggm risin®e {-P ¢ —= [1=(R/r)® 1) (3.5.15)

and Tre- T¢6- T¢r- 0

The physical components of the stresses are

UG,

¢ = =P - =0 (1=-(R/r)

)
rr ]

2G,

- —_— - a+2
oo Iqq” P+ R (1-(R/r) ] (3.5f16)

an - = -
4 09" Tye” Tgp= O

For the symmetrical expansion, the equilibrium equations in spherical system

with the absence of the body forces are
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(1/r’) T (r2g r)- (1/r)(u¢¢+ °ee) = 0
3 3 (0,.) = C (¢0,,) =0 (3.5.17)
. and 36 ‘%08’ " 39 ‘Yoo -3

':,f After substitution of eq.(3.5.16) into (3.5.17), the last equation of
(3.5.17) becomes 3P/38=3P/3¢=0. It follows that P=P(r). And the first

equation of (3.5.17) becomes

F " T;g%T & O-®m T Zfo lemter - R ) 07
(3.5.18)
: i; The integration of (3.5.11) yields the following,
4G, -
Pe-1D [1-(R/r)~ '1-4G,Q(R/r) + ¢ , (3.5.19)

where ¢ is the constant of integration and

/r 2 a-4 1 a+2 g?
W) = B ety e . e O Ty @8 (3.5.192)

where R, and r, are inner :adii of undeformed and deformed sphere,

respectively. With the help of (3.5.19), the following non-vanishing

Stresses are obtained,

Onp™ UG,Q(R/r) - ¢ ’

4G, =l 2G, e
%" o6 Onp* Ta=T) (1-(R/r) ]+T;;57 [1-(R/r) ] (3.5.20)

Consider the following boundary conditions in the resent problem,

(1) °rr'P‘ , at re=r, ,

(11) c"-Pz , at rer, . (3.5.21)
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! Upon satisfying the condition (i) in eq.(3.5.21), c=-P,. Applying the
; condition (ii),
P, ~ P, = 4G,Q(R,/r;) . (3.5.22)
from the geometrical condition rls=R¥+a(t),
ri- R} =r} - R} = r® - R? . (3.5.235
where R, and r, are the outer radii of the undeformed and deformed sphere

respectively. After a few steps of simple algebra manipulation, the

following relation is derived,

R/r - = 75 (3.5.24)
(K*=1 + 1/(R,/r,)?]

where K-R/R,. Eq.s (3.5.22), (3.5.24), (3.5.20) and (3.5.19a) with the known
P,, P,, R, and R, give the complete solution. It can be seen from (3.5.22)

\ that when P,=P,, Q(R,/r,)=0. Since the integrand of eq.(3.5.19a) is

Bonotonic increasing function it follows that Ry/r,=R,/r,. This {s true if
only if R,/r,;= R,/r,=1. This is the condition under which no deformation

takes place. This agrees with the incompressibility assumption. Some
fumerical solutions with R,/R,=1.5 and a=200 are given i{n Flg.28-30. Fig.28
Shows the variation of (P,~ P,) with respect to r,/R,. The former decreases
after a ceritical value of r,/R;. F1g.29 shows the distribution of the L

g along r-direction for a case P,/ 4G,=0.0051 and P,=0 while Fig.30 shows the

distribution of Tag and o¢¢ along r-direction for the same case.
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In this chapter, the closed form solutions for five special problems
were obtained, in which the prescribed deformation field has one
undetermined parameter. But for more complicaied problems it can be expected
that the numerical solutions are necessary. In next chapter, the numerical
method with finite element technique for the boundary value problem will be

formulated for doth incompressible and compressible plasticity.
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Fig.5 Pipe flow
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CHAPTER 4 - ENDOCHRONIC CONSTITUTIVE RELATION OF

COMPRESSIBLE PLASTICITY WITH FINITE DEFORMATION

The assumption of plastic incompressidbility, which is pivotal in the
development of the classical theory of plasticity, is an approximation and
simplification to the real situation. For scme rubber-like materials this
assumption may be a good approximation, dbut it is not a universal rule. In
reference [57] the assumption was evaluated through a series of simple
tension tests on some very important materials such as aluminum, copper and
low carbon steel. The experimental results showed that those materials are
plastically compressible and that the compressibility increases with
straining in the plastic region. Hence developing a theory for compressible
plasticity is very lmportant task. In this chapter, the plastic
complressibility will be introduced into the endochronic constitutive
equation. To do this the free energy density in the thermodynamic
formulation will be first modified. Then the method used for developing the
constitutive relation for incompressible plasticity in the Chapter 2 will be
used to get the constitutive equation {n the presence of compressible

-

plastic deformation.

4.1 Development of the Constitutive Equation

In chapter 2 a constant term ¥, in the free energy form was assumed. It

is noticed that this assumption led to the constitutive equation of
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incompressible plasticity. Now the constant term is replaced by a function

of I,, the third invariant of the Cauchy-Green deformation tensor. Hence,

the free energy density becomes

¥ oIy + aTq (Pu 1M mg )

i q1J qu . (4.1.1)

Along the line of the development of the constitutlive relation for the
incompressible material, it can be seen that with this modification to the

free energy density the covariant components of qr in the material frame

remain of the form

(r) (r) -
(r) A . A z -a (z-2'") , ,
Qg = e Cog ETFT IO e r Cas(z ) dz , (4.1.2)

(r)

C
where at‘- W .

For tne constitutive relation now the contravariant components of the

stress, upon use of eq.(2.1.8) in conjunction with eq.(4.1.1), are

TGB- % EZI’ —_— CGB_ Z(A(P)qaﬁ . C(r‘) (P)Q q(r)g')] (u.1.3)
[} 3

(r) q g’
or the covariant components of the stress

v,

< L - _ (r) (r) (r) (r) (r)a*
Tag DOEZI' aI, 2(A" "q )]

.4
ag ¢ 95800 g1 (4.1.8)

caB

Substitution q.(4.1.2) into eq.(4.1.4) gives the following relation

for the covariant components of the stress
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v,

-2 ——— z—'. ] V -
Tae poE2I, 3T, Cae + IOG(z z )Cagz ) dz

dc dc
au 8v

z
—CuvffIQG(ZZ-zl‘Zz)EET— = dz,dz,] . (4.1.5)

Once again ignore the small quantity of the double integral in eq.(4.1.5)

and get the constitutive equation as

¥, -
-2 — + z -y * §
Tas po[21, 3T, Cae IOG(Z z )Cagz ) dz ¢ ] . (4.1.6)
In the matrix form
¥, 2 "
[t] = £ (a1, = [c] + f%G(z~2')(C(2')] dz'} (4.1.6a)
Po 31, 0
with -
(r) _
G(z) = 2 Ei('ﬁ e %n? (4.1.6b)
rC

Wwhen the condition of incompressibility is imposed, ICaBl'1’ the term
d¥,/3I, is indefinite. If the term is set to dbe -P (the factor 2I, is also

absorbed), eq.(2.1.25) is again derived, which is the constitutive relation

for incompressible plasticity,

T~ P Cug * ng(z-z')Cagz') dz' . (2.1.25)

For intrinsic time scale, dii {3 no longer vanishing under a

compressible plastic deformation, thus

( & )2

at (2.1.15)

TPy T Pyl

Eq.(2.1.15), after using eq.(2.2.16), becomes
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%

AT e b 0 T R

25_2_ =1 2 42 -1 = :
(3 P1/8 (Co g Cugl?* P2 /8 Cy C o CoCoy (4.1.7)

or

1

2 . -
dg p:/4 (CGB

-1
2
dCaB) + p, /4 CXu ac a8 CBn anY . (4.1.8)

In matrix form

dg? = p,/4 (tr[B]}?+ p,/ktr(D] (4.1.9)
where
(0] = [c1™acciCel ace] (4.1.9a)
and
[8] = (c] 'dlc] (4.1.9b)

An intrinsic time scale z {s still defined to account for the hardening

or softening character of a material,

dzg'
Z - fﬁ FE,—)- (4.1.10)

where f(z) i3 a positive function of . If no hardening (softening) takes
place f£(g)=1,
In the curvilinear system as described in section 2 of Chapter 2, the

curvilinear components of the Cauchy-Green deformation tensor were given by

- 38 38
k %1

C - 8 —— — (2‘2.8)
WV UKL gl geV

and the curvilinear components of stress Tae by

29% 30°

T v~ ‘a8 !
s ax™ V¥

. (2.2.23)

- 78 -




Upon use of eq.(2.2.8) an alternative form of the intrinsic time can be

derived,

- -1 =

-1 .= -1
2 o 2
( dg ) p,/4 (Cae dCcB) + P, /4 CYQ dl‘:aB CBn dcﬂ,f (4.1.11)

or, in matrix form,

( dg )% = p,/b (tr(B1}2+p,/4 trD] (4.1.12)
where
(5] = [c17'drcy €1 ace] (4.1.12a)
and
(8] = [c1 'aLC) (4.1.120)

The constitutive eq.(4.1.6), by use of eq.(2.2.23), becomes

Y, - I
- E omm— * Z CL Al ' ]
TUV p°[2I; 31, CUV IOG(Z Z )Cu\()z ) dz ] (u‘1_13)
or
¥, - I
[c] = & (21, gp= [C » JgGlz-z")[C(2")] dz'} . (4.1.13a)
po 313 0

4.2 Discussion of the Function ¥,
In last section the function ¥, appears as a functional form in the

constitutive equation. How to choose the function so that it can describe
the compressible behavior of a material well needs much effort. In this

paper a particular form of ¥, given by eq.(4.2.1) is taken to demonstrate
the application of the constitutive equation:

¥, = (A/8)[1n(1,)]? ’ (4.2.1)
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where A is a material constant.

It is now shown that the constitutive equation with the assumed ¥, 1is

consistent with elasticity theory under infinitesimal deformation.

Substituting eq.(4.2.1) into the constitutive equation (4.1.6),

T,g™ P/ Po(MO(IC ffG(z-z')Cagz')dz'} (4.2.2)

where J i3 the Jacobian defined as

31,/ %] 0y, /3%°| ) (4.2.3)
When a deformation is very small, p/po=1, caB-GaB' and without lose any
generality
Jed A h m(1%e, ) (1+e,,) (1+e,,)
m14{€,,+€,,*€ 4, )+0(e2) = 1+sii . (4.2.4)

where xi and €y ({=1,2,3) are principal values of the deformation gradient

matrix and the strain tensor, respectively. Hence,

2 -
11’0(511) €44 . (4.2.5)

In(J) = ln(1+eii) =€
Eq.(4.2.5) represents the dilation of a material for infinitesimal
deformation. With the help of eq.(4.2.5), the Hooke's law is got,

TGB. A€11608+ ZG(O)CQB (4.2.6)

where ) is a Lame constant and G(0) the shear modulus.
In next chapter the constitutive relation given in eq.(4.2.2) will be

used to analyze the problems by means of the finite element technique.
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CHAPTER 5 - NUMERICAL SOLUTION

A numerical algorithm based on the finite element method of analysis
of the boundary value problem is developed in this chapter. The formulation
of the finite element equations i{s referred to the material system, namely,
the Lagrangian formulation. The finite element formulations for both
compressible and incompressible material are developed. A computer code is
established to solve a plane strain boundary value problem under a
compressible-plastic deformation by use of the linear triangular element.

Finally, the solutions of upsetting of a block (a forging process) are

presented.

5.1 Fundamental Equation (the Principle of Virtual Work)
Equations of equilibrium, when body forces are absent, in rectangular

coordinates of a material system can be shown to be

(JT“i) e (5.1.1)

where (JTai) i3 the stress per unit undeformed area. The mixed stress Tal,

which {s the projection of the force Ta along i{-direction in spatial system,

i3 defined as

i 1J J ’ aij- iyJ'a (5.1.2)

where x?- ax°/ayJ. °1J is the Cauchy stress, ( )'a represents 3()7ax%.
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After defining U to be the dlsplacement and u, the components of the

displacement and &§u, the components of the virtual displacement,

i

Multiplication of §uy to the equilibrium equation (5.1.1) and then

integration of the resultant equation over the undeformed volume give the

following

It )s, SU

v T av, = 0 . (5.1.3)

1

The application of Green's theorem to (5.1.3) yields the equation of the

principle of virtual work under large deformation as

a a 3
IVQ(JT i)éul’adv° - fso(JT i)ulds, ' (5.1.4)

where the surface integration of the right side of (5.1.4) is over the
undeformed surface. Equation (5.1.4) will be the basis of the finite element

formulation.

5.2 Incremental Form of the Endochronic Constitutive Equation
In Chapter 4 the endochronic constitutive equation for compressible

material was derived as

Z * - ' ' *
JTQ - Alog(J)CaB* IOG(z-z )Cagz ) dz . (4.2.4)

8
The incremental form, with respect to the intrinsic time scale, can be

obtained from the intrinsic time derivative of {(4.2.4) as

d(JTuﬂ)/dz - (A/J)JCa + G caB+ dQ (5.2.1)

8 a8




—4F:TF!-',

Wi L AR

ol

A

g d(JTuB) = (A/J) dJ CGB+ G dcuB + ande s (5.2.2)
y i where
) :
J - G = Alog(J)+G(0)
: and
- dc
> dG{z~z') "Ta8
¢ : dQ_,= Z = = dz . (5.2.3)
For an incompressible material,
d(JTaB) - - (dP)CGB* G (dcae) + ande (5.2.4)

where G = G(0)-P and an remains the same as in (5.2.3).

8

5.3 Formulation of the Finite Element Equations

The finite element approximation 1s developed from a displacement
asaumption within each element, which gives the displacements at any point
within the element as a linear combination of the displacements at a finite
number of nodes of the element, the coefficients being constants or
functions of the position within ;he element. In this section we adopt such
a displacement assumption in general form using material coordinates, i.e.,
a Lagrangian formulation.

g Assuming the displacement within any element in the form

s 0 % xMey (5.3.1)




where qm denotes the nodal displacements; ¢ is the transformation function

which gives the displacements at any point within the element; §° are the

nodal coordinates.
The following equations are some derived geometric relations which will

be used in the finite element formulation,

(1) The derivative of u, with respect to x°

1

u (5.3.2)

m
i,0 ¢1a R !
where ¢Tu - 3(¢T)/ax°.

(2) The increment of u1 with respect to intrinsic time scale, since c? is a

function of the material system,

dui m dqm o

(3) The corresponding spatial coordinates within the element

v, - x“mk . (5.3.4)
Hence
dy = du = ¢ d (5.3.5)
yk uk @k qm ’ 03-
y, =& + =5+ 4. q (5.3.6)
kK,a Ka uk.a ka 'ka ‘o e
and
dy, = ¢° d (5.3.7)
yk.a ¢ka U to
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(4) Since we have the relation
a
yk'a xJ - ij (5.3.8)
then
a -1
- . (5.3.9)
X, [yj’a] 3
(5) A difrerentiation of both sides of eq.(5.3.8) gives
[+ 3 [+ 3
d(yk'a)xJ * Yo d(xj) =0 . (5.3.10)
Then what follows is
a__ e B - - g® B .1 o - x3 0
dx, = = %y X dyy g = Xp X ¢ppddpe < Xy dqy 0 (5.3.10)
where
B m m X

(6) The Cauchy-Green deformation tensor and i{ts incremental form are

caB' yk,a yk,B

and
m m m ’
where
m o m
w(ik)- 1/2(wik* wki) (defined) . (5.3.14)

(7) The Jacobian and {ts incremental form are

J = 'yi,al

- 85 ~

-




a m m

Having the assumed displacement, we get the equilibrium equation for an
element by direct substitution of (5.3.1) and (5.3.2) into the equation of

the principle of virtual work (5.1.4)

a ,.m a .. .m
Since the virtual displacement qu (m=1,2.....) are independent of each
other, the following m equations are obtained
fo GT V6T dV,= £ (5.3.17)
Vo IT 78 q%Vem Iy s -3
where
a .. m
rm - ISO(JT 1)¢1nads° . (5.3.18)
The incremental form of (5.3.17) can be written as
Sy d(IT®) 8T aVe= d(f) (5.3.19)
' 1) ®1q9% m’ ex -3
wnere
a m
d(fm)ex - Isod(JT 1) °1“ads° . (5.3.20)
From the tensor transformation

a _B
qki- xk x1 Taﬂ (5.3.21)
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and
a a .Y 8
T 1" X X Xy TYB (5.3.22)
then
a a Y B
d(JT i) = d(xk X, X5 JTYB) . (5.3.23)

Applying the chain rule of differentiation to (5.3.23) and having recourse
to (5.3.11) and (5.3.21), it is obtained

a a Y 8 a Y 8
a(JT i) = d(xk) X, X JTYB*xk d(xk) X, J'rYs

8 a
d(xi) JTYB«»xk

Y _8
k X d(JTYB)

a.m am a.m a

= [xswsk(J°k1)+kask(J°si)+kasi(J°ks)]dqm*xk x
_,0 ] m a Y _B

- X, {Zw(ks)(dosi) + wal(Joks)}dqm+ X, X, X/ d(JTYs) . (5.3.24)

S %astitution of eq.(5.2.2) into the last term In eq.(5.3.24) and then

eq.(5.3.12) i{nto the resultant equation gives

a Y 8 a Y B -
X, X X d(JTYB) - X, X X, [(X/J)(dJ)CYB# Gd(CYB)+ dQYde]

a m - m
- X, {[Awnnéki’ 2Gw(1k)]dqm¢ koidz} , (5.3.25)
where
dQu = % x> dQyq . (5.3.26)

Substitution of (5.3.25) back into (5.3.24) yields

a a m - m m m
d(JT i)-xk[[ann6k1¢20w(ik)-2w(ks)(Josi)-wu(Joks)]dqmekidz} . (5.3.27)
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Finally, (5.3.19) in conjunction with (5.3.27) results in the following, a

set of j linear equations in dqm ’

J 3 J J
P D¥anie® 25116 V12 (ke Vi 9001 ) Va1 Vi g ) 10V0 a9y
J
. A Ty 4,40 eV, (5.3.28)

Alternatively, (5.3.28) can be written in matrix form as

(t)
[kjm] dqm = d(r,) + d(f,) = d(r

Vex Ppm A (5.3.29)

where the element stiffness matrix k is

Jm

o _J = m J _,,m J J
= Ly Dnn¥iet 204V () V(908 )" CLY RALLE

kjm si ik

and the incremental pseudo-force vector -

_ J
ey - fvowidekldzdvo , (5.3.30)

where the integration is performed over the undeformed area of an element.

Considering the equilibrium of the entire structure, we obtain the
structure stiffness matrix in the form

(K] {dq} = {dF} (5.3.31)

where (K] {s global stiffness matrix, {dq} the total incremental nodal
displacements, {dF} the total {ncremental nodal force which consists of
applied force and the incremental plastic pseudo-force calculated using the
second equation of (5.3.30).

To complete this section, the formulation for incompresasible materfgls

is derived through the mixed finite element method as follows. The
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displacement and the pressure are taken as the primary variables. The

displacement within any element remains in the form of (5.3.1),
m, a a
u, = ¢i(x.. x)qy (5.3.1)
and the pressure within the element is approximated as

P=ox*xp, (5.3.32)

where pn is the nodal pressure. The degree of the interpclation function pn

for the pressure should be one order less than the degree of the function ¢
for the displacements in order to have consistency of approximation for the
displacements and the pressure. This will be seen clearly from the following

derivation because P is one order less differentiable than ui' The
incremental form of P is
P = o M xNep (5.3.33)

When the incremental form of constitutive equation for incompressible

material (5.2.4) is used in the last term of eq.(5.3.24) with J=1 (hereafter

in this section),

a .Y 8 T a Y B =
X, X Xg d(TYB) - X X X (~apP Cvs‘ G d<cY8)+ dQYde]
[0 3 n - m
- X, {-p 8, 19p * ch(ik)dqm‘ koidzJ . (5.3.34)
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Substituting (5.3.34) into (5.3.24),

a o 8 = m m m n
d(T i)-xk{tzcw(ik)—zw(ks)(osi)—wsl(aks)]dqm- p 6, dp * koidz} . (5.3.35)

Finally, (5.3.19) in conjunction with (5.3.35) results in the following
= o J _,.m J _.m 3 _ n J
Ty, D20 (1) ¥l 2% (g) Vik (9091 ) T¥a 1 Vik (I kg ) 10Veday = Jy 07wy dVedp

- 1, v, dQ dzdv, . (5.3.36)

- d(rj)ex Vo Tk K1

In matrix form eq.(5.3.26) becomes

()
ijm]dqm - [Ljn]dpn - d(rj)ex + d(rj)p- d(t‘J Y o (5.3.37)
where the element stiffness matrix kJm is -
. = J _,,B J _.m o J
K3 v F2%% (1) Vi B (ke) Vik 9 01 ) T¥e g Y1k (I 04 g0 30V0
- - n.J
LJn fvop w“dvo (5.3.38)
and
_ J
d(rJ).p - fvowidekidzdvo

Now we have m equations but m+n unknowns (m for displacement and n for

pressure). The constraints of incompressibility, i.e., J=1 or 3-0 muset

considered. From equation (5.3.15),

m :
Jo dq =0 . (5.3.39)
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If we multiply pn to both aides of eq.(5.3.39) and then integrate the

resultant equation over the undeformed element, we can obtain n additional

equations given by eq.(5.3.40)
n o
fvoo w“dvo dqm ) . (5.3.40)

In the matrix form, (5.3.40) becomes
- . . .3.4
[an]dqm 0 (5.3.41)

The simultaneous equations of q's and p's can be written as

(t)
kjm Ljn dqm er
- (5.3.42)
L 0 dpn 0 .

For an entire structure we have the equation in the following form,

(t)

KN Lam| |99 dFy
Luy 0 dpy 0

(5.3.43)

where N and M are the total degrees of freedom for displacement and pressure

in the entire structure.

In general, the integrands of (5.3.30) and (5.3.38) are functions of

the material coordinates xa. It becomes very complicated when high order of
shape function 13 used. Therefore the numerical integration technique must

be adopted in the calculation. However, when the linear triangular element

4
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is used, ¢'s, J, and ¢'s are constants within each element at each
incremental intrinsic time. This simplifies the calculation a great deal. On
the other hand when a relatively fine mesh is used, the linear triangular
elements can provide the convergent results. The linear triangular elements
are still used by many researchers. Hence it will be used in this work. The
formulation of triangular element for plane strain problem will be discussed

in detail in next section.

5.4 Formulation of Linear Triangular Element for Plane Strain
The plane strain i{s considered as a material deformation occurring in a
plane while the deformation in direction normal to the plane vanishes. Such

a deformation can be described as

a
Yy - yi(x ,t) ({,a = 1,2) ,

Yy = x° (5.4.1)

The Cauchy-Green deformation tensor and its inverse and i{ts incremental

3 form can be calculated as follows

-1
[CaB] - cuv 0 , [Cael 1. Cuv 0
0 1 0 1
and
tc 3= Cuv 0 (uyv = 1,2) (5.4.2)
a8 0 0

1 -~
where C ., C , and C are functions of x' and x? only. The stresses
Uv uv Hv
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4

related to the x*® direction from (5.2.1) are the following

Tiy= 0,5= 0 ’
Tay™ Ga3= 0 (5.4.3)

and

Tes= G35= A l0g(J)/J

172

1
| 2. |Cuv| remains the same for both cases. Hence we need

where J = [C_,

only deal with the quantities related to the x! and x? directions.
In the linear triangular element, the deformation can be written

explicitly as

i i m _a
ypm Xt u=xr oiax a4 (1=1,2; a=0,1,2; m=1,2,...6) ,

¥y = x? (uy=0) (5.4.4)

where the ¢'s comprise a set of constants related to the nodal coordinates.
For a typical triangular element shown in Fig.31, we denote the nodal

deformation as

T
Qm' (q; v92+,93+Q4,9s -qo)

o (U, VyaUas¥aaliy,vy) T (5.4.5)

.

where u's are the displacement in x! direction and v's in x? direction,

respectively. The symbol (-)T denotes the tranapose of a vector.
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Then, we can write the displacement in eq.(5.4.4) more explicitly as

following

us= [1 Xl le b\ 0 bz 0 bg 0

and
-
0 a, 0 a; O a;
vel1 x*x*J]0 Db, 0 Db, 0 Db,
0 ¢, 0 ¢ 0 ¢,
where

1= (x(5)X{3) ~ X(3) ¥(2) /(3

D= (X?Z)‘ xz3))/(2A)

Cy= (xz3)— xzz))/(za)

(5.4.6)

(5.4.7)

and other a's, b's and c's can be obtained by the subscripts (1), (2), and

(3) permuting in a natural order. A 13 the area of the triangle,

-

X1y Xt

A = |1 xzz) xzz) (5.4.8)
1 2
S N
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The derivatives of displacements with respect to the material system

m . - . -
ui'u- "iuqm ’(Q-‘I,Z, i 1,2,-m 1,6) ’ (5-“09)

where the constants ¢'s, in matrix form, can be written as

[¢i ™ - ° °n for m=(2n-1)
e 0 0
and ne-1,23 (5.4.10)
0 0
[¢ ]m - form = 2n
la bn cn

Since ¢'s as well as y's, J, and ¢'s are constants at each intrinsic
time step, the element stiffness (5.3.29) and (5,.,3.30) become, in the case
of linear triangular element as

r(t)

[kjm] dqm = d(f + d(r )p- d j ) (5.4.11)

$ex 3

where the element stiffness matrix kJm is

m ] =~ 0 J _,m 3 _.a g
Ky 8 DAwpnui et 260400y, =20 gy ¥y, (Jog )=0g ¥y (Jo )]

and the {ncremental force vector

J

d(fJ)p - ‘wlk

koiA dz . - (5.4.12)

At this moment, the degenerate cases of (5.4.10) and (5.4.12), namely
the case under the small deformation, are given bellow. In eq.(5.4.12) if

0's = 0, and y's = ¢'s, the equations represent the small deformation of

plasticity [55],
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(t)

[kjm] dqm = d(rj)ex + d(fg)p' dfJ s (5.4.13)
where
m J m 3
kjm' a [A°nn¢kk+ 2G(0)¢(ik)°ik] !
)
d(fJ)p - widekiA dz (5.4.14)

Furthermore, if rp- 0, the equations represent the small deformation of the

elasticity (57],

[kJm]qm' (rJ)ex ’ (5.4.15)
where the element stiffness matrix k}m is
m . J m J
kjm- A [x¢nn¢kk+ 20¢(1k)¢1k] (5.4.16)

and (f,) is an external force vector.

Jex

5.5 Brief Discussion of the Calculation of Q's
It has been seen that the effect of plasticity is represented by the

pseudo-force drp in (5.5.12). In the calculation of this force, anB plays a

very important role. Recall anB in (5.2.3)

dc
dG(z~z') _"a8
9,4 (2)= 15 = - dz' . (5.2.3)

At each incremental step, dca needs to integrate from O to z, the current

8

intrinsic time scale. To calculate dCu numerically, the equation for dCa

8 3
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at z = Z. + Az after knowing the value of Ca at z, i3 now derived.

1+1 i B !

Eq.(5.2.3) at z;,, can be written as follows

21 doz-2') Las

- L
dQGB(zi‘ﬂ) fg dz dz ' dz
o datzmz) Cas o, B0 dotame) Lat o, (5.5.1)
° dz dz’ 2 dz dz"' ' T

From the mean value theorem and the smoothness of CaB , the last term

in eq.(5.5.1) can be written, as a good approximation,

dc zZ,+AZ

z, +Az .y dC ot
I 1 dcéz z2') da? dz '~ d:s e le i dGé: z') az' . (5.5.2)
2y z z 1+1 %4 t
Substitution of G(z) = } Gre-arz into (5.5.1) gives
dC
(r) -a Az a8 -a Az, _
dQ g (z ) = 2 {Q " (z)e "r™0 v —= 2+ G.(e "r™71 - 1)} 1=0,1,...
where QQB(O)-O. (5.5.3)

Eq.(5.5.3) tells that the history dependence of the material response

(through dca (z1¢1)] at the intrinsic time z will be determined by

8 i+1

Qae(zi) plus the effect caused only by the new incremental step through

dCGB
H dz zi+1 and Azi+1 *
For r=1, {.e., G(z)= G, e-az'
dc
-a Az af ~a Az
dQGB(zi*1) - Qae (zl)e i+ iz zi" Go(e i -1). (5.5.4)
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5.6 The Iterative Process and Programming Steps

After defining the problem, giving the dimension and tolerance of the
intrinsic time, meshing the domain, and calculating the values of ¢'s and
the area of each element, the incremental load step starts. For each

incremental step the values of ¢'s are updated and then the stiffness matrix

1s calculated. An initial value Az? {3 assigned to the increment of

intrinsic time at every step. The plastic pseudo-forces corresponding to the

dz°-are then .valuated. Now the linear simultaneous equations of incremental
nodal displacements are set. After imposing the boundary conditions, this
set of equations {s solved. Upon use of the lncremental displacements,
incremental strains, stresses, and Cauchy-Green deformation tensor etc. are

obtained. The incremental intrinsic time dzi is calculated. Knowing the new

incremental f~trinsic time, the new pseudo-force are again obtained. The
simultaneous linear equations with the same stiffness matrix are solved and
new incremental nodal displacements are obtained. The new dz follows to the
new displacements. The iteration process is’continued until the difference
in dz between any two consecutive lterations is less than some defined
tolerance. Then the next new incremental step {3 repeated. Above {teration
procedure is described in the flow chart as shown in Fig.32.

On the basis of the formulae in section $.4 and the flow chart in
Fig.32, a computer program with Fortran language called FELP {3 developed to
analyze the plane strain of finite plastic deformation problems. The

computer program consists of five parts.
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Part one

In this part the dimensioning of the program variables is first set up
and the main control parameters (such as the total number of elements,
nodes, the number of degree of freedom for each node, etc.) and the material

constants (G,, a, and i) are input. The informations of mesh, namely the

coordinates for every node and the nodes for each element are then input.
The nodes of elements are stored {n an array NOD(N,I) in which N denotes the
number of element and I the number of node. The array plays a very important
role in the connection of elements and whole structure. The node and element
data are defined by two ways in the program, which are automatic mesh
forming in the compute program and the data inputing from read statement.
Former way is efficient for relatively regular domains while the later way
is for irregular ones. The necessary boundary conditions are read in.
Finally all input and calculated data are printed out for checking and

recording.

Part two

The quantitles related to the material system are calculated in this
part, which {nclude the area of the elements and ¢'s, i.e., a's, b's, and
¢,s defined in eq.(5.4.7). These quantities also are primary variables to
the stiffness matrix. To save storage the stiffness matrix is astored in the
half bandwidth. So the width of the half band is obtained in this part. The

arrays are initialized and get ready for following main calculation.
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Part three

We start outer do-loop for the incremental steps of load or
deformation. The values of incremental forces or deformations at each step
are applied through the boundary conditions. For each step the values of ¥'s
are updated. Then the stiffness matrix for each element is obtained upon use
of eq.(5.4.12) and summed to the half banded global stiffness matrix. This
1s accomplished by a subroutine called STIFF. What follows next is imposing
the displacement boundary condition in the equation to get the modified
global stiffness matrix and the modified force vector through a subroutine
BNAR. The initial force boundary condition, i.e., node forces are added to
force vector directly. It has been seen from eq.{5.4.11) that to complete
force vector needs to add the pseudo-plastic force. We will describe this in

inner do-~loop in part 5.

Part four

The inner do-loop is designed for the iteration process. At each

incremental step, an initial values of intrinsic time dz° is given. The
pseudo-plastic forces are calculated upon use of the eq.(5.4.12) and the
subroutine PF. Then they are added to the appropriate positions in total
force vector, Now the linear simultanedus egquations for the nodal
displacements are set. The equations are solved by use of the Gauss-Jordan
method. After obtaining the displacement increments, new intrinsic time dz

can be obtained by calling a subroutine DZ. The iteration process continues

until the value (dz°-dz)/dz less than the tolerance.
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Part five

When inner do-loop stops the converge displacement increments are
obtained at the incremental step. Then the necessary quantities such as
stains, stresses, and other related parameters through a subroutine called
RES can be calculated. If the results for incremental values are interested,
they are printed out. Otherwise they are added to the total values and the
next step starts. The program consists of the main program and 10

subroutines. It will listed in Appendix A. .

5.7 Numerical Example

Previous analysis is now applied to study a problem of metal forging —
- upsetting process of a block shown {n Fig.33. A similar problem "The
upsetiing of a cylindrical block "™ was taken up by a Joint Examination
Program of the Validity of Various Numerical Methods for the Analysis of
Metal Forming Processes and discussed around table by fourteen groups in the
IUTAM SYMPOSIUM TUTZING/GERMANY [58]. The collected results showed
considerable discrepancies. However, what agreed in discussion was two
important factors responsible for the discrepancies, which are the
selections of the elements and ;he deformation increments. What was
suggested was to use finer element and smaller deformation increment up to
0.25%. To explore the computational capability of the theory in our
research, following data will be taken in the calculation.

The dimension of original block are set to be 2 unit in width, 3 in
height, and 1 unit in third direction since the plane stain i{s concerned.
Sticking, i.e., no slip condition, is assumed along the tool-work interface.
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The material constants G,, A, and a are set to-be 1., 1., and 200. The

geometrical dimension and the material constant are taken {in such a way so

that all quantities in the problem are normalized. Gy=A in elastic case

represents v=0.25. Due to the symmetry of the problem, a quarter part of the
block is analysed by using the mesh division depicted in Fig.34 in which we
have 143 nodes and 252 elements. The increment per each reduction (in hight)
step 13 set to be 0.001.

Fig.35 shows the deformation profiles for different reduction levels.
When reduction reaches 0.7, i.e., about 50%, the foiding was observed.
Fig.36 shows the distorted grid vs. the original grid. The relatively rigid
part has been seen in the up-left of the domain, i.e., the up-middle of the

block. Fig.37 gives the bulge ratio, “max/w°' at the different stages of
reduction in height. At large reduction, the material gets softer in the

x!-direction. The variation of intrinsic time z respect to the reduction is
shown in Fig.38.

Fig 39 i{llustrates the computed results of upsetting load as a function
of the reduction in hight. The variations of stresses with respect to the
reduction and the intrinsic time at elements No.251 and No.231 are shown in

Fig.40-43, F1g.40 and 42 give the variation of stresases at element No.25! in

x3-direction with respect to the reduction in height. The results show the
stress ({n this element reaches the maximum at a critical value of the
reduction and continues to decrease 3o that the 3ign of the stress is

changed. However the variation of stress at element No.23! which is located
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inner of the domain does not show the same phenomenon. The phenomenon

occurred at element No.251 i3 due to the dramatic distortion of the

atructure. In Fig. 44-45 we show the distribution of stresses in Y, and Y

direction along with the width of the upset block.

The convergence in this calculation in this problem is excellent. Under
the current chosen incremental reduction, the average number iteration for
each increment step is two. This is 3 beauty of the endochronic theory in
finite element method. because we control dz, the intrinsic time, in the

iteration which plays the crucial rule in the endochronic theory.
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CONCLUSIONS AND RECOMMENDATIONS

Finite plasticity has very significant applications {n engineering
problems. With the rapid progress of the modern technology, developing a
sophisticated theory and applying it to solve engineering problem are the
tasks of the science and engineer.

Endochronic theory of plasticity has come to a fully developed stage
after about 15 years' development since 1970's. Its predictive power of the
behavior of materials, computational capabllity, application to the
practical problems have been seen and proved through analysis and
experiments. In this research we have studied extensively the endochronic
theory of plasticity and its practical applications under large
deformation.Again we show tﬁe contribution of endochronic theory to the
plasticity regime.

The endochronic theory of incompressible plasticity was reviewed and
applied to the analysi{s of a set of special problems which have significance
in the theory as well as the practice of metal forming processes and
pressure vessel structures. TO our knowledge, this is the first time in the
field that this set of problems are solved in closed form solutions.

The theory was also extended to model compressibility of plastic
deformation. Incompressibility is an idealization and simplification of the
reality and is the key point of the development of the classical plasticity.
We added a term, representing the volume change, to the free energy and
developed a constitutive equation of compressible plasticity with a
functional term which reflects the compressibility of materials. Then with a
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special form of the function, we developed a numerical scheme with a finite

element technique and a computer program code for plane strain problems.
Finally, an example of metal forming of forging process (upsetting a block),
was analyzed and solved by the developed computer program. The solution
obtained by this method is very resonable. The application of endochronic
theory to the large plastic deformation has a great potential for
application to more complicated engineering problems.

The numerical algorithm could be extended to cover axial symmetry and
three-dimensional problems. Carefully controlled experiments are needed for

further verification of the validity of the theory.
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APPENDIX - COMPUTER PROGRAM

PROGRAM NAME FELP

FUNCTION ENDOCHRONIC ANALYSIS OF LARGE PLASTIC
DEFORMATION OF PLANE STRAIN

DISCRIPTION OF IMPORTANT PARAMETERS IN THE PROGRAM
NEM --- NUMBER OF ELEMENT
NNM --- NUMBER OF NODES
NDF -~— NUMBER OF DEGREE OF FREEDOM AT A NODE
NPE --— NUMBER OF NODES PER ELEMENT
TH --- THICKNESS OF PLANE
GO,GAMA,CR1,AR! —--- MATERIAL CONSTANTS RELATED TO KERNEL FUNCTION
NRMAX,NCMAX --— MAXIMUM NUMBER OF ROW AND COLUM OF STIFFNESS MATRIX
MAXE,MAXD -~- MAXIMUM NUMBER COF ELEMENT AND DISPLACEMENT B3.C.
NHBW ~-- HALF BAND WIDTH
ERRO,ERR --— TOLERANCE FOR INTRINSIC TIME
NBDF ,NBSF -~- NUMBER OF NODES (DISPLACEMENT AND FORCE PRESCRIBED)

DISCRIPTION OF IMPORTANT ARRAIES IN THE PROGRAM
GSTIFT(NRMAX,NCMAX) -—- BANDED GLOBEL STIFFNESS MATRIX
GF,GFE,GFP(NCMAX) --- VECTORS OF TOTAL, APPLIED, AND PSEUDOFORCE, RESPECTIVFLY
XT,YT(NNM) --- MATERIAL COORDINATES OF NODES
BI'S,CI'S(NEM) --- DIEEERENCE OF MATERIAL COORDINATES B'S AND C'S
PSIT(NEM,2,2,6) -——~ VALUES OF
DXYT,DYXT(NEM) =-—- DX/DY AND DY/DX
CX,CY,CXY(NEM) ~—- CAUCHY-GREEN DEFORMATION TENSOR
DCX,DCY,DCXY(NEM) ~—- INCREMENTAL OF CAUCHY-GREEN DEFORMATION TENSOR
TX,TY,TXY(NEM) --- STRESS
DZ0,DZ1(NEM) =---~ PREVIOUS AND PRESENT INCREMENTAL INTRINSIC TIME
BQ'S Q'S(NEM) -=~- QUANTITIES RELATED TO CALCULATION OF PSEUDOFORCEO
UT,VT(NNM) =--- DISPLACEMENT AT NODES IN X AND Y DIRECTION
IBDF,VBDF(NBDF) =--~ NODES AND VALUE VECTOR OF DISPLACEMENT B.C.
1BSF,VBSF(NBSF) -—~ NODES AND VALUE VECTOR OF FORCE B.C.
NOD(NEM, 3) -~- NODES OF ELEMENTS
VOT(NEM) -—- VOLUM OF ELEMENTS

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION GSTIFT(300,50),GF(300),GFE(300),GFP(300),GF1(300),

1 DXy(2,2),DYX(2,2),NEDGE(50),IPRINT(30),DELT(700),

1 BRT(700),SEL(700),FTU(700),EDZ(700), SEL1(700),

1 EDZ1(260)
COMMON/UNIT1/BI1(260),BI2(260),BI3(260),CI1(260),C12(260),

1 CI13(260)

COMMON/UNIT2/DCX(260),DCY(260),DCXY(260),DZ0(260),DZ1(260),

1 €x(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),

1 DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
1 BQX1(260),BQY1(260),BQXY1(260),UT(150),VT(150),

1 PSIT(260,2,2,6)
COMMON/UNIT3/XT(150),¥T(150),NOD(260,3),VOT(260)
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COMMON/UNIT4/1IBDF(50),VBDF(50),IBSF(20),VBSF(20)
COMMON/CONST/NEM,NNM,NDF ,NPE

DATA TH/1.0D0O/
DATA NRMAX,NCMAX,MAXE,MAXD/300,50,260,50/
DATA GO,GAMA,CR1,AR1/1.d4+0,1.0D+0,1.0D+0,200.0D+0/

NDF=2
NPE=3

READ(15,*)NNP,NDZ
C NNP --- NUMBER OF INCREMENTAL STEPS
C NDZ --- NUMBER OF ITERATION FOR INTRINSIC TIME
c

DO 9605 I=1,NPRINT
READ(15,%*)IPRINT(I)
9605 CONTINUE
NPRINT --- NUMBER OF INTERMEDIATE STEPS AT WHICH RESULTS PRINTED
IPRINT(NPRINT) --- STEP NUMBER VECTOR

I READ(15,*)NPRINT

OO0

READ(15,*)IMES
IMES ~--- TYPE OF INPUT: IMES=0 INFORMATION FOR NODES AND ELEMENTS
FROM READ STATEMENT IMES=1 FROM CALCULATION FOR REGULAR DOMAIN

aaoa

IF (IMES.EQ.0)GO TO 9500

INFORMATION FOR RECTAGULAR BLOCK IN FORGE PROCESS
NX,NY -—- NUMBER OF NODES IN X AND Y DIRECTION
XL,YL --- LENGTH OF PLATE IM X AND Y DIRECTION
ITYPE --- ITYPE=1 FIXD END, ITYPE=O SHEAR FREE END
READ(15,%)NX,NY,XL,YL,ITYPE
CALL NODE(NX,NY,XL,YL,NEQ)
CALL DFSF(NX,NY,ITYPE,NBDF,NBSF)
! ND=2ANX +2%NY-4
DO 260 I=1,NX
NEDGE(I)=I
NEDGE(NX +NY+I~2)=NNM-1 +1
260 CONTINUE
) NEDGE(NX +1)=3%*NX~1
‘ NEDGE(2#NX+NY=1)=(2%NX~1)*(NY=-2)+1
DO 270 I=1,NY-3
NEDGE(NX+I+1)=NEDGE(NX+I)+2%NX~1
NEDGE(2¥NX +NY~-1+I )=NEDGE(2*NX+NY=-2+1 )~2#NX +1
270 CONTINUE
GO TO 9600

s NeNeRESNe!

~

9500 READ(15,*)NEM,NNM
DO 9300 I=1,NNM
READ(15,*)XT(I),YT(I)
9300 CONTINUE
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9310

9320

9400
9600
300

301

305
306
310

315

314

DO 9310 I=1,NEM
READ(15,#*)NoD(I,1),NOD(I,2),NOD(I,3)
CONTINUE

READ(15, *)NBDF

DO 9320 I=1,NEDF
READ(15,*)IBDF(I),VBDF(I)
CONTINUE

READ (15, * )NBSF

DO 9400 I=1,NBSF
READ(15,*)IBSF(I),VBSF(I)
CONTINUE

NEQ=NNM™®NDF -
WRITE(16,300)

FORMAT (4X, ' ELEMENT', 10X, 'NODES'/)
WRITE(16,301)(N,(NOD(N,I),I=1,NPE),N=1,NEM)
FORMAT(2X,15,7X,315)

WRITE(16,310)

WRITE(16,305)

FORMAT (4X, 'NODE', 15X, *COORDINATES'/)
WRITE(16,306) (N, XT(N),YT(N),N=1,NNM)
FORMAT(1X,15,10X,2F10.4)
WRITE(16,310)

FORMAT(///)

WRITE(16,315)NBDF

FORMAT (4X, 'DISPLACSMENT B.C.',I%/)
IF(NBDF.EQ.Q) GO TO 10
WRITE(16,314)

FORMAT (7X, ' POSITION VALUE'/)

DO 5 I=1,NEDF
WRITE(16,%*)IBDF(I),VBDF(I)

CONTINUE

WRITE(16,310)

WRITE(16,316)NBSF

FORMAT (4X, ' FORCE B.C.',I5/)
IF(NBSF.EQ.0) GO TO 8

WRITE(16,314)

DO 6 I=1,NBSF
WRITE(16,*)IBSF(I),VBSF(I)

CONTINUE

ERRO=0Q. 01

WRITE(16,310)

WRITE(16,%*)'G0 =',GO
WRITE(16,%)'LAMDA =',GAMA

NHBEW=0

DO 15 Ne=1,NEM

DO 15 I=1,NPE

DO 15 J=1,NPE
NW=(IABS(NOD(N,I)-NOD(N,J))+1)*NDF
IF(NHBW.LT.NW) NHBW=NW
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15 CONTINUE
WRITE(16,310)
WRITE(16,325) NHEW
325 FORMAT(UX,'NHBW =',I5)

DO 20 I=1,NEQ
GFE(I)=0.0
20 CONTINUE

DYX(1,1)=1.
DYX(2,2)=1.
DYX(1,2)=0.
DYX(2,1)=0.
DXY(1,1)=1,
DXY(2,2)=1,
DXY(1,2)=0.
DXY(2,1)=0.
DO 35 I=1,NEM
DZ0(I)=0.
DZ1(I)=0.
TX(I)=0. -
TXY(I)=0.
TY(I)=0.
BQX1(1)=0.
BQY1(I)=0.
BQXY1(I)=0.
CX(I)=1.
CY(I)=1.
CXY(1)=0.
DCX(I)=0.
DCY(I)=0.
DCXY(I)=0.
DO 36 I1=1,2
DO 36 I2e1,2
DXYT(I,I1,12)=DXY(I1,12)
DYXT(I,I1,12)=DYX(I1,I2)

36 CONTINUE

35 CONTINUE
DO 38 I=1,NNM

| UT(I)=0.

| VT(I)=0. '

38 CONTINUE

| o
\ CALL BC(TH)
o
Cre#sa#® STARTING THE LOADING STEPS *##%s
c
DO 60 NP=1,NNP
DO 45 I=1,NEQ
GF1(I)=0.
DO 45 J=1,NHBW
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GSTIFT(I,J)=0.

45 CONTINUE
IRES=0
o
CALL STIFF(GSTIFT,NRMAX,NCMAX,GO,GAMA)
o
IF (NBDF.EQ.0)GO TO 100
DO 102 I=1,NBDF
IE=IBDF(I)
VE=VBDF(I)
CALL BNDRY(NRMAX,NCMAX,NEQ,NHBW,GSTIFT,GF1,IE,VE)
102 CONTINUE
100 CONTINUE
o
IF(NBSF.EQ.0)GO TO 105
DO 25 I=1,NBSF
II=IBSF(I)
GF1(I1)=GF1(II)+VBSF(I)
25 CONTINUE
105 CONTINUE
o
C$3433 STARTING THE INTERATION FOR DZ $$$$$
o
DO 110 NZ=1,NDZ
DO 115 I=1,NEQ
GFP(I)=0.
115 CONTINUE
c
CALL PF(GFP,IBDF,NRMAX,MAXD,CR1,AR1,NBDF)
C
DO 160 N=1,NEQ
GF(N)=GF1(N)~GFP(N)
160 CONTINUE
c
CALL SOL{NRMAX,NCMAX,NEQ,NHBW,GSTIFT,GF,IRES)
IRES=1
c
CALL DZZ(GF,NRMAX)
c
DO 175 N=1,NEM
Z1=DZ1(N)
Z0=DZO(N)
ERR«DABS(Z1-20)/21
IF(ERR.GT.ERRO) GO TO 180
175 CONTINUE
ITER=NZ
c
GO TO 200

-
o

C DC 210 N=1,NEM
DZO(N)=DZ1(N)
210 CONTINUE
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110 CONTINUE
C
C$$333 ENDING THE INTERATION FOR DZ $338$
c
200 CONTINUE
c
CALL RES(GO,GF,NRMAX, GAMA)
o
C QUANTITIES RELVENT TO BLOCH FORGING PROCESS
DISMAX=XL+UT (NNM)
DISRT=DISMAX/Au
DELT(NP)=VT(1)
BRT(NP)=DISRT
SEL(NP)=TY(NEM-5)
SEL(NP)=TY(NEM-21)
> EDZ(NP)=DZ1(NEM-5)
EDZ1(NP)=DZ1(NEM-21)
| STY=0.
JJJ=NX-1
DO 254 I=1,JJJ
STY=TY(4*I-3)+STY
254 CONTINUE
FTU(NP)=STY/JJJ
o
C PRINTING INTERMIDIATE RESULTS
c

DO 2005 I=!,NPRINT
IF(NP.EQ.IPRINT(I)) GO TO 2006
2005 CONTINUE k
GO TO 60
2006 WRITE(16,310)
WRITE(16,340)
340 FORMAT(UX,'ELEMENT STRAIN'/)
DO 2000 N=1,NEM
EX=(CX(N)=-1.0d+0)/2.0d+0
EY=(CY(N)=1.0d+0)/2.0d+0 :
EXY=CXY(N)/2.0d+0
WRITE(16,2010)N,EX,EY,EXY
2000 CONTINUE
2010 FORMAT(2X,I5,3F20.7)
WRITE(16,310)
WRITE(16,600) .
600 FORMAT(4X, 'ELEMENT STRESSES  '/)
i DO 220 N=1,NEM
' WRITE(16,605)N,TX(N),TY(N),TXY(N)
220 CONTINUE

605 FORMAT(U4X,IS,L4F15.7) i
WRITE(16,310) {
WRITE(16,410)

410 FORMAT(UX,' NODES DISPLACEMENTS'/)

DO 230 N=1,NNM
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WRITE(16, 415)N,UT(N),VT(N)
230 CONTINUE
415 FORMAT(4X,I5,4X,2F15.10)
WRITE(16,310)
WRITE(16, 420) ¥
420 FORMAT(UX,* NODES STRESSES'/)
DO 250 I=1,NNM
NCON=0
SUMX=0.0D+0Q
SUMY=0.0D+Q
SUMXY=0.0D+0Q )
DO 255 N=1,NEM 4
DO 255 J=1,NPE J
NI=NOD(N,J)
IF(I.NE.NI) GO TO 255 -
SUMX =SUMX +TX(N)
1 SUMY =SUMY +TY(N)
SUMXY =SUMXY +TXY(N)
NCON=NCON+1
255 CONTINUE
SUMX =SUMX/NCON
SUMY =SUMY /NCON
SUMXY =SUMXY/NCON
WRITE(16,605)I,SUMX,SUMY, SUMXY _
250 CONTINUE
WRITE(16,310)
WRITE(16,610) ]
610 FORMAT(4X,'EDGE'/)
DO 275 I=1,ND
II-NEDGE(I)
UD=XT(II)+UT(II)
VD=YT(II)+VT(II)
WRITE(16,*)UD,VD
275 CONTINUE
60 CONTINUE

, C
f CH#%2a% ENDING LOADING STEPS ###s»
o
C PRINTING QUANTITIES RELVENT TO BLOCH FORGE PROCESS
WRITE(16,310)
WRITE(16,610)
DO 280 I=1,ND
II-NEDGE(I)
WRITE(16,#)XT(II),YT(II)
280 CONTINUE
WRITE(16,310)
WRITE(16,620) 3
620 FORMAT(Y4X, 'RATIO'/)
DO 290 N=1,NNP
WRITE(16,*)DELT(N),BRT(N)
290 CONTINUE
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WRITE(16,210)
DO 291 N=1,NNP
WRITE(16,*)DELT(N),SEL(N)
291 CONTINUE
STOP
END
c
SUBROUTINE SOL(NRM,NCM,NEQNS,NEW,BAND,RHS,IRES)
C**%SOLVING A BAND SYMMETRIC SYSTEMS OF EQNS
C##*IN RESOLVING, IRES .GT. 0. LHS ELIMINATICON IS SKIPPED
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION BAND(NRM,NCM),RHS(NRM)
MEQNS=NEQNS-1
IF(IRES.GT.0) GO TO 40
DO 30 NPIV=1,MEQNS
NPIVOT=NPIV+1
LSTSUB=NPIV+NBW-1
IF(LSTSUB.GT.NEQNS) LSTSUB=NEQNS
DO 20 NROW=NPIVOT,LSTSUB
C***INVERT ROWS AND COLUMNS FOR ROW FACTOR
NCOL=NROW-NPIV+1
FACTOR=BAND (NPIV,NCOL)/BAND(NPIV,1)
DO 10 NCOL~NROW,LSTSUB
ICOL=NCOL~NROW+1
JCOL=NCOL-NPIV+1
10 BAND (NROW, ICOL)=BAND (NROW,ICOL)~FACTOR*BAND (NPIV,JCQL)
20 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)
30 CONTINUE
GO TO 70
40 DO 60 NPIV=1,MEQNS
NPIVOT=NPIV+1
LSTSUB=NPIV+NBW-1
IF(LSTSUB.GT.NEQNS) LSTSUB=NEQNS
DO 50 NROW-NPIVOT,LSTSUB
NCOL=NROWANPIV+1
FACTOR=BAND(NPIV,NCOL)/BAND(NPIV,1)
50 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)
60 CONTINUE
CR##BACK SUBSTITUTION
70 DO 90 IJK=2,NEQNS
NPIV=NEQNSAILJK+2
RHS(NPIV)=RHS(NPIV)/BAND(NPIV,1)
LSTSUBeNPIV-NBW+1
IF({LSTSUB.LT.1) LSTSUB=1
NPIVOT=NPIV-1
DO 80 JKI=LSTSUB,NPIVOT
NROW=NPIVOT-JKI+LSTSUB
NCOL=NPIV-NROW+1
FACTOR=BAND (NRQW,NCOL)
30 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)
90 CONTINUE
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SUBRQUTINE BNDRY(NRMAX,NCMAX,NEQ,NHBW,S,SL,IE,SVAL)

C***THIS PROGRAM IMPOSES THE PRESCRIBED B. C. ON
CH*##*THE SYSTEM MATRIX(BANDED SYMMETRIC MATRIX)

C#aag

IS THE STIFFNESS MATRIX

Ce#25], IS THE LOAD VECTOR :
C###TE IS THE LABEL OF THE VARIABLE THAT IS PERSCRIBED
C###3VAL IS THE VALUE OF PRESCRIBED VARIABLE

20

c

IMPLICIT REAL*8(A-H,0-2)
DIMENSION S(NRMAX,NCMAX),SL(NRMAX)
IT=NHBW-1

I=IE~-NHEW

DO 10 II=1,IT

Tel+1

IF(I.LT.1) GO TO 10
JaIE-I+1
SL(I)=SL(I)-S(I,J)*SVAL
5(1,d)=0.0

CONTINUE

S{IE,1)=1.0

SL(IE)=SVAL

I=IE

DO 20 I1=2,NHBW

I=I+1

IF(I.GT.NEQ) GO TO 20
SL(I)=SL(I)-S(IE,II)*SVAL
$.iE,II)=0.0

CONTINUE

RETURN

END

SUBROUTINE MV(N,A,MAXE)

C®#*THE INVERSE OF MATRIX A(DIMENSION IS N)

300

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(MAXE,MAXE),B(200),C(200)
A(1,1)=1.07A(1,1)

NN=N-1

DO 360 M=1,NN

KaM+1

DO 300 I=1,M

C(I)=0.0

B(I)=0.0

DO 300 J=1,M
B(I)=B(I)+A(I,J)*A(J,K)
CONTINUE

D=0.0

DO 310 I=1,M
D=D+A(K,I)*B(I)
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310 CONTINUE
D-A(KpK)-D
A(K,K)=1.0/D
4 DO 320 I=1,M
320 CONTINUE
DO 330 J=1,M
DO 330 I=1,M
330 C(J)=C(J)+A(K,I)*A(I,J)

y DO 340 J=1,M
d A(K,J)==C(J)/D
} 340 CONTINUE

] DO 350 I=1,M

1 DO 350 J=1,M

350 A(I,J)=A(I,J)-B(I)*A(K,J)
' 360 CONTINUE
RETURN
END
c
SUBROUTINE DXDY(N,DYX,DXY,EUV)
C*%#TQ CALCULATE DX/DY AND DY/DX
IMPLICIT REAL*8(A-H,0-Z)
COMMON/UNIT1/BL1(260),BI2(260),BI3(260),CI1(260),CI2(260),
1 CI3(260)
DIMENSION BE(3),CE(3),EUV(6),DYX(2,2),DXY(2,2)
b BE(1)=BI1(N)
BE(2)=BI2(N)
{ BE(3)=BI3(N)
CE(1)=CIT(N)
| CE(2)=CI2(N)
y CE(3)=CI3(N)
DO 50 Ie1,2
DYX(I,1)=O0.
DYX(I,2)=0.
[ : DO 50 J=1,3
IF(I.EQ.1) Ke=2%J-1
IF(I.EQ.2) Ke2%J
DYX(I,1)=DYX(I,1)+BE(J)*EUV(K)
1 DYX(I,2)=DYX(I,2)+CE(J)*EUV(K)
50 CONTINUE
DYX(1,1)=DYX(1,1)+1.
DYX(2,2)=DYX(2,2)+1.
D=DYX(1,1)#DYX(2,2)-DYX(1,2)*DYX(2,1)
DXY(1,1)=DYX(2,2)/D
DXY(2,2)=DYX(1,1)/D
S DXY(1,2)==-DY¥X(1,2)/D
DXY(2,1)==DYX(2,1)/D
RETURN
END

SUBROUTINE NODE(NX,NY,XL,YL,NEQ)

- 135-

..L_______“———-——




e

C*#%#TQ GENERIZE THE NODES OF THE ELEMENTS AND THE COORDINATES OF THE NODES.
IMPLICIT REAL*8(A-H,0~2)
COMMON/UNIT1/BI1(260),BI2(260),BI3(260),CI1(260),CI2(260),

1 CI3(260)
COMMON/UNIT3/XT(150),YT(150),N0D(260,3),V0T(260)
COMMON/CONST/NEM,NNM,NDF ,NPE
NX1=NX-1
NY1=NY-1 ‘
NEM=NX1%*NY1#*4
NNM=(2*NX~-1)*¥NY1+NX
NEQ=NNM*NDF
NOD(1,1)=NX+1
NOD(1,3)=1
NOD(2,1)=NOD(1,1)
NOD(2,2)=NOD(1,3)
NOD(2,3)=2%NX
NOD(3,1)=NOD(1,1)
NOD(3,2)=NOD(2, 3)
NOD(3, 3)=2%NX +1
NOD(4,1)=NOD(1,1)
NOD(U4,2)=NOD(3,3)
NOD(4,3)=NOD(1,2)

DO 50 I=1,NX-2
DO 50 J=1,4
DO 50 K=1,3
II=I*U+J
NOD(II,K)=NOD((I-1)#*4+J,K)+1

50 CONTINUE
DG 100 I=1,NY-2
DO 100 J=1,NX1%4
DO 100 K=1,3
IT=I*NX1%4+J
NOD(II,K)=NOD((I-1)%NX1%*4+J K)+2*NX~1
100 CONTINUE
DX =XL/NX1
DY=YL/NY1
DO 150 N=1,NY
DO 150 I=1,NX
NI=(N-1)*(2%NX~-1)+]
XT(NI)=(I-1)*DX
YT(NI)=YL-(N-1)%*DY
150 CONTINUE
DO 160 N=1,NY1
DO 160 I=1,NX1
NI=(N-1)%(2#NX=1)+NX+I
XT(NI)=DX¥*¥(2%1-1)/2
YT(NI)=YL-DY*(2%N-1)/2
160 CONTINUE
RETURN
END
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SUBRQUTINE STIFF(GSTIFT,NRMAX,NCMAX,GO,GAMA)
C**#*TO FORM THE STIFFNESS MATRIX
IMPLICIT REAL*8(A-H,0-2)
DIMENSION GSTIFT(NRMAX,NCMAX),PSI(2,2,6),BE(3),CE(3),
1 psri1(2,2,6),Psr2(2,2,6),ELSTIF(6,6),DXY(2,2),T(2,2)

1 »BC(6)
COMMON/UNIT1/BI1(260),B12(260),BI3(260),CI1(260),CI2(260),
1 CI3(260)

COMMON/UNIT2/DCX(260),DCY(260),DCXY(260),DZ0(26Q),DZ21(260),
1 CX(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),
1 DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
1 BQX1(260),8QY1(260),BQXY1(260),UT(150),VvT(150),
1 PSIT(260,2,2,6)
COMMON/UNIT3/XT(150),YT(150),NOD(260,3),V0T(260)

COMMON/CONST/NEM,NNM,NDF ,NPE
DO 45 Ns=1,NEM

VOL=VOT(N)

BE(1)=BI1(N)

BE(2)=BI2(N)

BE(3)=BI3(N)

CE(1)=CI1(N)

CE(2)=CI2(N)

CE(3)=CI3(N)

DO 50 I=1,2
DO 50 J=1,2

50 CONTINUE
Slat,

S2=0.

DO 65 IS=1,2
DO 70 IK=1,2
DO 70 IM~1,3
Ml=m2%#IM-1
M2=2#IM

PSI(IS,IK,M1)=s(DXY(1,IK)*BE(IM)+DXY(2,IK)*CE(IM))*S1
PSI(IS,IK,M2)=(DXY(1,IK)#*BE(IM)+DXY(2,IK)*CE(IM))*S2
PSIT(N,IS,IK,M1)=PSI(IS,IK,M1)

PSIT(N,IS,IK,M2)=PSI(IS,IK,M2)

70 CONTINUE
S1=Q.

S2=1,

65 CONTINUE
GJ=DYXT(N,1,1)*DYXT(N,2,2)-DYXT(N,1,2)*DYXT(N,2,1)
GG=GAMA*DLOG(GJ ) +GO
T(1,1)=TX(N)*GJ
T(2,2)=TY(N)*GJ
T(1,2)=TXY(N)*GJ
T(2,1)=T(1,2)

DO 80 Mw1,6

DO 80 Ke1,2
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DO 80 I=1,2
PSI1(K,I,M)=0.
PSI2(X,I,M)=0.
DO 80 IS=1,2
PSItT(K,I,M)=PSI1(K,I,M)+PSI(K,IS,M)*T(IS,I)
1 +PSI(IS,I,M)*T(K,IS)
PSI2(K,I ,M)=PSI2(K,I,M)+PSI(IS,I ,M)*T(K,IS)
80 CONTINUE
DO 85 J=1,6
DO 85 M=1,6
ELSTIF(J,M)=0.
DO 9Q K=1,2
DO 90 Is«1,2
S=PSI(I,K,J)*(PSI1(K,I,M)+PSI2(I,K,M))
S1=PSI(I,K,J)*(PSI(I,K,M)+PSI(K,I ,M))
ELSTIF(J,M)=ELSTIF(J,M)~-S+GG*S1
90 CONTINUE
ELSTIF(J,M)=ELSTIF(J,M)*VOL
85 CONTINUE
DO 150 I=1,6
DQ 150 J=1,6
ELSTIF(I,J)=ELSTIF(I,J)+(PSI(1,1,1)+PSI(2,2,1))*
1 (PSI(1,1,J)+PSI(2,2,J))*GAMA*VOL
150 CONTINUE
c
DO 92 Is=t,NPE
NR=(NOD{N,I)-1)*NDF
DO 92 II=1,NDF
NR=NR+1
L=(I-1)*NDF+II
DO 94 J=1,NPE
NCL=(NOD(N,J)=1)*NDF
DO 95 JJ=1,NDF
M=(J=1)*NDF+JJ
: NC=NCL+JJ+1~-NR
' IF(NC) 95,95,96
96 GSTIFT(NR,NC)=GSTIFT(NR,NC)+ELSTIF(L M)
95 CONTINUE
94 CONTINUE
92 CONTINUE
U5 CONTINUE
RETURN
END

c
SUBROUTINE DZZ(GF,NRMAX)
C##»T0 CALCULATE DZ
IMPLICIT REAL*8(A-H,0-2)
DIMENSION DYX(2,2),GF(NRMAX),DUV(6),PSI(2,2,6),
1 ps11(2,2,6),PsS12(2,2,6),PSI3(2,2,6),DC(2,2)
COMMON/UNIT2/DCX(260),DCY(260),DCXY(260),D20(260),DZ1(260),
1 Cx(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),
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160

166

167

168
165

170

1

1

DXYT(260,2,2),DYXT(260,2,2),QX1{260),Q¥1(260),Q&XY¥1(260),
BQX1(260),BQY1(260),BQXY1(260),UT(150),VT(150),
PSIT(260,2,2,6)

COMMON/UNIT3/XT(150),YT(150),NOD(260,3),VOT(260)

COMMON/CONST/NEM,NNM,NDF ,NPE

DO 150 N=1,NEM

DO 155 I=1,NPE

NI=NOD(N,I)

DO 155 J=1,NDF

DUV((I-1)%2+J)=GF((NI=1)*2+J)

CONTINUE

DO 160 I=1,2

DO 160 K=1,2

DYX(I,K)=DYXT(N,I,X)

DO 160 M=1,6

PSI(I,K,M)=PSIT(N,I,K,M)

CONTINUE

C1=CX(N)

C2=CY(N)

C12=CXY(N)

DD=C1#C2~C12*C12

VC1=C2/DD

VC2=C1/DD

VC12=-C12/DD

DO 165 M=1,6

DO 166 I=1,2

DO 166 IA=t,2

PSI1(I,IA,M)=0.0

DO 166 K=1,2

PST1(L,IA,M)=PSI1(I,IA,M)+PSI(I,K,M)*DYX(K,IA)

CONTINUE

DO 167 IA=1,2

DO 167 IB=1,2

PSI2(IA,IB,M)=0.0

DO 167 1I=1,2

PSI2(IA,IB,M)=PSI2(IA,IB,M)+PSI1(I,IA,M)*DYX(1,IB)

CONTINUE .

DO 168 IA=1,2

DO 168 IB=1,2

PSI3(IA,IB,M)=PSI2(IA,IB,M)+PSI2(IB,IA,M)

CONTINUE

CONTINUE

DO 170 IA=1,2

DO 170 IB=1,2

DC(IA,IB)=0Q.

DO 170 M=1,6

DC(IA,IB)=DC(IA,IB)+PSI3(IA,IB,M)*DUV(M)

CONTINUE

DU1=VC1%#DC(1,1)+VC12%*DC(1,2)

DU2«VC12%#DC(1,2)+VC2%DC(2,2)

DU12=VC1#DC(1,2)+VC12#DC(2,2)
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150

DU21=VC12#DC(1,1)+VC2*DC(1,2)
DZ=DU1#DU1+2.%DU12%DU21+DU2¥DU2
DZ=DSQRT(DZ)

DZ1(N)=DZ

DCX(N)=DC(1,1)

DCY(N)=DC(2,2)

DCXY(N)=DC(1,2)

CONTINUE

RETURN

END

SUBROUTINE RES(GO,GF ,NRMAX, GAMA)
IMPLICIT REAL*8(A-H,0-2)

C®*&*THE RESULTS OF DISPLACEMENT AND STRESSES FOR EACH STEP

100

120

130

135

COMMON/UNIT1/BI1(260),B12(260),BI3(260),CI1(260),CI2(260),

1 CI3(260)

COMMON/UNIT2/DCX(260),DCY(260),DCXY(260),DZ0(260),DZ1(260),
€X(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),
DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
BQX1(260),BQY1(260),BQXY1(260),UT(150),VT(150),
PSIT(260,2,2,6)

COMMON/UNIT3/XT(150),YT(150),NOD(260, 3),VOT(260)

COMMON/CONST/NEM,NNM,NDF ,NPE

DIMENSION DX¥(2,2),DYX(2,2),EUV(6),GF(NRMAX),DUV(6)

DO 100 N=1,NNM

UT(N)=UT(N)+GF(2#N-1)

VT(N)=VT(N)+GF(2*N)

CONTINUE

DO 110 N=1,NEM

DO 120 I=1,NPE

NI=NOD(N,I)

EUV(2#I-1)=UT(NI)

EUV(2#%1)=VT(NI)

DUV(2%#I-1)=GF(2*NI-1)

DUV(2#I)=GF(NI*2)

CONTINUE

DO 130 I=1,2

DO 130 Jet1,2

DXY(I,J)=DXYT(N,I,J)

DYX(I,J)=DYXT(N,I,J)

CONTINUE

GJ=DYX(1,1)*DYX(2,2)-DYX(1,2)%*DYX(2,1)

DJJ=0.0D+0

DO 135 M=1,6

DJJ=DJJI+(PSIT(N,1,1,M)+PSIT(N,2,2,M) )*DUV(M)

CONTINUE

G=GAMA®DLOG(GJ)+GO

TA=QX1(N)+G*DCX(N)+GAMA*CX (N)*DJJ

TB=QY1(N)+G*DCY(N)+GAMA*CY (N)*DJJ

TAB=QXY1(N)+G*DCXY(N)+GAMA*CXY (N )*DJJ

T1J=TX(N)*GJ

1
1
1
1
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140

145

110

T2J=TY(N)*GJ

T12J=TXY(N)*GJ

D1«DXY(1,1)

D2=DXY¥(2,2)

D12=DX¥(1,2)

D21=DX¥(2,1)

T1=D1#D1#TA+2 *D1#D21#TAB+D21%#D21%#TB
T2=D12#D12%TA+2, *D 1 2¥D2*#TAB+D 2*#D2*TB
T12=D12%D1#TA+D12%D 21 *TAB+D2*D 1 #*TAB+D2*D21*TB
F1=0.0D0

F2=0.0D0

F12=0.0D0

F21=0.0D0

DO 140 M=1,6
F1=F1+PSIT(N,1,1,M)*DUV(M)
F2=F2+PSIT(N,2,2,M) *DUV(M)
F12=F12+PSIT(N,1,2,M) *DUV(M)
F21=F21+PSIT(N,2,1,M) *DUV(M)
CONTINUE

H1«T1J*F1+T12J%F21
H12=T1J*F12+T12J%F2
H21=T12J*F 1+T2J *F 21

H2=T12J*F 12+T2J*F2
TXJeT1J+T1-(H1+H1)
TYJ=T2J+T2-(H2+H2)
TXYJ=T12J+T12-(H12+H21)

CALL DXDY(N,DYX,DXY,EUV)
GJ1=DYX(1,1)*DYX(2,2)-DYX(1,2)*DYX(2,1)

TX(N)=TXJ/GJ1

TY(N)=TYJ/GJ1

TXY(N)=TXYJ/GJ1

DO 145 I=1,2

DO 145 Je1,2

DXYT(N,I,J)=DXY(I,J)

DYXT(N,I,J)=DYX(I,J)

CONTINUE
CX(N)=DYX(1,1)#*DYX(1,1)+DYX(2,1)#*DYX(2,1)
CY(N)=DYX(1,2)#%DYX(1,2)+DYX(2,2)#*DYX(2,2)
CXY(N)=DYX(1,1)*DYX(1,2)+DYX(2,1)*DYX(2,2)
BQX1(N)=QX1(N)

BQY1(N)=QY1(N)

BQXY1(N)=QXY1(N)

CONTINUE

RETURN

END

SUBROUTINE PF(GFP,IBDF,NRMAX,MAXD,CR1,AR1,NBDF)
IMPLICIT REAL*8(A-H,0-2)

C***TO CALCULATE PLASTIC FORCES

COMMON/UNIT2/DCX(260),DCY(260),DCXY(260),DZ0(260),DZ1(260),
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120

135

130
125
115

1
1
1
1

CX(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),
DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
BQX1(260),BQY1(260),BQXY1(260),UT(150),VT(150),
PSIT(260,2,2,6)

COMMON/UNIT3/XT(150),¥T(150),NOD(260,3),V0T(260)

COMMON/CONST/NEM,NNM,NDF ,NPE

DIMENSION ELQT(2,2),ELGFP(6),1BDF(MAXD),GFP(NRMAX)

DO 115 N=1,NEM

VOL=VOT(N)

ELDZ=DZO(N)

D1=DXYT(N,1,1)

D2=DXYT(N,2,2)

D12=DXYT(N,1,2)

D21=DXYT(N,2,1)

S=DEXP(-AR1*ELDZ)

S1=CR1#(8-1.)

QX =BQX1(N)*S+DCX(N)*S1

QY=BQY1(N)*S+DCY(N)*31

QXY=BQXY1(N)*S+DCXY(N)*S?

QX1 (N)=QX

QY1 (N)=QY

QXY1(N)=QXY

ELQT(1,1)=D1%*D1%QX+2,#D21#QXY*D1+D21*D21*QY

ELQT(1,2)=D1#¥D12%QX+D 12%#D21*QXY +D 1#D2*QXY+D21*D2*QY

ELQT(2,2)=D12%D12%QX+2.#D2%D 12*QXY +D2*D 2#*QY

ELQT(2,1)=ELQT(1,2)

DO 120 J=1,6

ELGFP(J)=0.

DO 120 I=1,2

DO 120 K=1,2

ELGFP(J)=ELGFP(J)+PSIT(N,I,K,J)*ELQT(K,I)*VOL

CONTINUE

DO 125 I=1,NPE

NI=NOD(N,I)

DO 130 K=1,NDF

NII=(NI-1)%2+K

DO 135 J=1,NEDF

NJ=IBDF(J)

IF (NII.EQ.NJ) GO TO 130

CONTINUE

GFP(NII)=ELGFP((I-1)#2+K)+GFP(NII)

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE BC(TH)

C**#*TQ CALCULATE BI,CI,AND AREAS

IMPLICIT REAL*8(A-H,0-2)
COMMON/UNIT1/BI1(260),BI2(260),B13(260),CI1(260),CI2(260),
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32

31

30

3010

3020

3030

1

CI3(260)
COMMON/UNIT3/XT(150),YT(150),NOD(260, 3),V0T(260)
COMMON/CONST/NEM,NNM,NDF ,NPE
DIMENSION BE(3),CE(3),X(3),¥(3)
DO 30 N=1,NEM
DO 32 I=1,NPE
NI«NOD(N,I)

X(I)=XT(NI)
Y(I)=YT(NI)

CONTINUE
AREA=X(1)*(Y(2)-Y(3))+X(2)*{Y(3)=Y(1))+X(3)*(Y(1)=¥(2))
DO 31 I=1,NPE

J=l+1
IF(J.GT.NPE)J=J-NPE
KaJ+1
IF(X.GT.NPE)K=K-NPE
BE(I)=(Y(J)-Y(K))/AREA
CE(I)={(X(K)-X(J))/AREA
CONTINUE

BIT(N)=BE(1)
BI2(N)=BE(2)
BI3(N)=BE(3)
CIT(N)=CE(1)
CI2(N)=CE(2)
CI3(N)=CE(3)
VOT(N)=AREA/2.*TH
CONTINUE

RETURN

END

SUBROUTINE DFSF(NX,NY,ITYPE,NBDF,NBSF)
IMPLICIT REAL*8(A-H,0-2)
COMMON/UNIT4/1BDF(30),VBDF(30),IBSF(20),VBSF(20)
IF(ITYPE.EQ.0)GO TO 3000

NBOF=2%NX +NY-1+NX

NBSF=0

DO 3010 I~1,NX

IBDF(2%I-1)=I%2-1

VBDF(2#1-1)=0.D+00

IBDF(2%1)=1%2

VEDF (2%I )=—1.0D-03

CONTINUE

DO 3020 I=1,NY-1
IBDF(2*NX+I )= (2%#NX~1)#I #2+1

VBDF (2*NX+I)=0.D+00

CONTINUE

DO 3030 I=1,NX

IBDF (2*NX+NY=1+1 )m(2%NX~1)#(NY~-1)#2+2%]
VBDF (2*NX+NY-1+1)=0.D+00

CONTINUE

GO TO 4000
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3000

4010

4020

‘.“ 4030

4000

NBDF =NX +NY

NBSF=NX

DO 4010 I=1,NX
IBSF(I)m2*1
VBSF(I)=1.0D-03
CONTINUE
VBSF(1)=5.0D-04

VBSF (NX)=5.0D~04

DO 4020 Iet,NY
IBDF(I)m2%NYX#(I41)+1
VBDF(I)=0.D+00
CONTINUE

DO 4030 I=1,NX
IBDF(NY+I)=(NX*(NY~-1)+I)%2
VBDF(NY+I)=0.D+00
CONTINUE

CONTINUE

RETURN

END
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